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Conventional Direct Detection Experiments
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All looking for single scattering events from DM
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Power Deposited by Dark Matter Scattering

Instead of individual events, use power/heat deposited by DM
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Power Deposited by Dark Matter Scattering

Instead of individual events, use power/heat deposited by DM
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Using a very sensitive bolometers



Power Deposited by Dark Matter Scattering

Instead of individual events, use power/heat deposited by DM
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Power Deposition Mechanism

DM scattering creates phonons in this low mass regime: MeV - GeV
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Power Deposited by Dark Matter Scattering

The excited phonons could directly be detected
or
In a SC, the phonons will break Cooper pairs & release

quasiparticles that can be detected

We already have devices that can measure very
small power deposition in this way



Captured Dark Matter on Earth
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FIG. 1. Schematic of floating DM on the outer region of the
celestial object as found in this work (dark shaded shell).

Over time, halo DM may get captured in the Earth and can get thermalized



Conventional direct detection experiments do not
have low enough threshold to probe thermalized DM

Halo DM Thermalized DM
m, =1 GeV m, =1GeV
Eyin = O(keV) Eyin = O(10 meV)
vy, = 230 km s ! vy, =1kms™!

Low threshold experiments are ideal for them



Quantum Devices Based on Superconductor
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Quantum Devices Based on Superconductor

Low noise bolometer, Cryogenic infrared sensor

Mixing chamber shield (<15 mK) Still shield (-0.85K)
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Quantum Devices Based on Superconductor

SuperCDMS Si detector covered with SC Al fins coupled to W TES
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New Limits on DM-nuclear cross section
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Unprecedented power sensitivity helps us put new limits on DM-nucleon cross section
for both thermalized and halo population
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New Limits on DM-nuclear cross section

competitive limit for - ""-...K.“.r,’f:.., 2
halo DM
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Unprecedented power sensitivity helps us put new limits on DM-nucleon cross section
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Optimizing the absorber material
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New materials with more phonon states at low energy
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Challenges for detection:
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Power calibration of the calorimeter
Neutron scattering
Radioactivity & cosmic rays

Unknown systematics
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Similarity w/ superconductor-based Qubit
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Athermal phonon sensor used SC Al-based Qubit chip
in SuperCDMS

Technological similarity between Quantum sensors & Qubit chips

Cross-community collaboration will be critical
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Final takeaways

> As DM searches dig deeper into the parameter space, it becomes more
challenging

> New technique of measuring the power deposited by DM could be more
useful in future

> Mesoscopic quantum devices are set to improve further in measuring small
energy deposit

> Close technical connection with qubit development research

> Collaborative strategy will be beneficial
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Phonons are quanta of crystal lattice oscillation
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Dark Matter Interaction Rate

Velocity-averaged interaction rate
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Single & Multi-phonon Structure Factor
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Structure factors of Al & Si
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Phonon structure factors S(q,®) in Al & Si are favorable for scattering with O(10 meV) energy DM
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Differential Scattering Rate in Al & Si
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Phonon structure factors S(q,®) in Al & Si are favorable for scattering with O(10 meV) energy DM
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Floating Dark Matter on Earth

Earth: o\ N = 1028 cm?
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For DM mass 1-10 GeV and xsec > 107° cm?, the thermalized population
can get very dense near Earth’s surface

However, these DM particles have very low energy, E_. .~ O(10 meV) o5



