Dark Matter subhalos from semi-analytical perspectives (as applied to indirect DM searches)

Julien Lavalle

CNRS – LUPM – Montpellier

(incl. important contribs from G. Facchinetti, T. Lacroix, M. Stref)

(+ D. Maurin, J. Pérez-Romero, M.A. Sanchez-Conde)

[Hyperlinks to arXiv refs. 1610 16233, 2007 16362, 2201 16388, 2007 16381]

TAUP - Vienna - August 2023

DM subhalos: connecting fundamental unknowns

Origin of cosmological perturbations / Inflation

 \rightarrow Primordial power spectrum (PS)

Nature and origin of dark matter

DM: - grows primordial perturbations (matter PS)

- imprints its own features (interactions, etc.)
- might even generate additional perturbations
- → Smallest dark structures carry invaluable information down to much smaller scales than CMB+LSS can probe

Setting the minimal halo mass (thermal DM)

Mind the range!

Kinetic decoupling

(~ end of collisions with plasma)

- → onset of DM free-streaming
- → sets minimal DM halo mass

Roughly $\propto \lambda_{\rm fs}^3 \propto (1/m_{\gamma})^3$

Structure formation in ACDM

1-parameter model (mass) + density profile (non-linear collapse)

See also:
Hoffman+'01, Green+'04,
Bertschinger'06,
Bringmann+'07,
Gondolo+'08, etc.

$$\lambda_{\rm fs} = a_{\rm eq} \int_{t_{\rm kd}}^{t_{\rm eq}} dt \frac{v(t)}{a(t)} \approx v_{\rm kd} (a_{\rm kd}/a_{\rm eq})/H_{\rm eq}$$

Routes to modeling DM subhalos

Cosmological simulations

- (+) Great for non-linear evolution (halo shapes, impact of baryons)
- (+) Great for galaxy/cluster population studies + systematics in LSS cosmology
- (+) Test/validate analytical models
- (-) Resolution limited (subhalos>10⁵M_{sun})
- (-) Cosmology limited
- (-) Cannot be extrapolated to known target objects (e.g. MW, M31, Coma, etc.)

(Semi)-analytical models

- (-) Simulation inputs (e.g. profiles, pdf for concentration)
- (-) A few simplifying assumption (assess pros/cons)
- (+) Includes properties related to DM candidates
- (+) No resolution limit
- (+) No cosmology limit
- (+) Fast (~min-hr)
- (+) Can account for details of real/constrained hosts

Semi-analytical (sub)halo models for cosmology

- → Power spectrum and halo mass functions [e.g. ETHOS Bringmann, Cyr-Racine, Vogelsberger+]
- → Halo models and populations of galaxies [e.g. Galacticus Benson+]
- → Subhalo mass functions (w/o spatial distribution) [e.g. van den Bosch, Giocoli+, see also SASHIMI Ando+]

DM subhalos in known galaxies/clusters

TNG50 - Pillepich+

© David Dayag

Subhalo populations in specific galaxies/clusters

- * Local mass function carries information on primordial PS and DM nature
- * Observational features expected:
 - → gravitational/kinematic (~DM candidate dependent)
 - → impact on other types (DM candidate dependent)
- CAUTION: specific hosts are constrained (content, kinematics, etc.)
 - → Extrapolations from simulations hardly trustable

NEEDS:

- => Spatial distribution (of properties) required beyond mass function
- => Down to cutoff mass
- => Characterize subhalo (impact on) searches in specific galaxies or clusters

Stimulating ideas for gravitational searches: Lensing: e.g. Vegetti+ Pulsar timing: e.g. Ramani+'20 Halometry: e.g. Van Tilburg+'18

Analytical population model for a constrained host halo

1. Facts

- → Real galaxies constrained by observations:
 - baryonic content
 - overall DM profile
- → Non-linear predictions for profiles:
 - NFW or Einasto (scale invariance)

$$\rho_{\text{tot}}(R) = \left\langle \rho_{\text{smooth}}(R) + \sum_{i}^{N_{\text{tot}}} \rho_{i}(|\vec{R} - \vec{r}_{i}|) \right\rangle$$

Observation+theory constraints

Analytical population model for a constrained host halo

1. Facts

- → Real galaxies constrained by observations:
 - baryonic content
 - overall DM profile
- → Non-linear predictions for profiles:
 - NFW or Einasto (scale invariance)

2. Reasoning

- → If subhalos were hard spheres
 - would trace overall DM profile
 - would retain initial properties (no spatial dependence)
- → Can be considered as hard spheres at host halo collapse and at accretion (initial conditions)
- → Changes induced by tidal evolution/stripping

$$\rho_{\text{tot}}(R) = \left\langle \rho_{\text{smooth}}(R) + \sum_{i}^{N_{\text{tot}}} \rho_{i}(|\vec{R} - \vec{r_{i}}|) \right\rangle$$

Observation+theory constraints

Initial conditions: homogeneous mass and concentration pdfs

$$\frac{\mathrm{d}^{n} N^{0}}{\mathrm{d}\omega^{n}} = N_{0} \underbrace{\frac{\mathrm{d}\mathcal{P}_{V}^{0}(\vec{x})}{\mathrm{d}V}}_{\text{spatial distrib.}} \times \underbrace{\frac{\mathrm{d}\mathcal{P}_{m}^{0}(m)}{\mathrm{d}m}}_{\text{mass distrib.}} \times \underbrace{\frac{\mathrm{d}\mathcal{P}_{c}^{0}(c,m)}{\mathrm{d}c}}_{\text{concentration distrib.}}$$

Analytical population model for a constrained host halo

1. Facts

- → Real galaxies constrained by observations:
 - baryonic content
 - overall DM profile
- → Non-linear predictions for profiles:
 - NFW or Einasto (scale invariance)

2. Reasoning

- → If subhalos were hard spheres
 - would trace overall DM profile
 - would retain initial properties (no spatial dependence)
- → Can be considered as hard spheres at host halo collapse and at accretion (initial conditions)
- → Changes induced by tidal evolution/stripping

3. Model

- → Assume hard spheres initially
- → Determine tidal evolution from gravitational interactions with host + baryons
- → Final phase space non-trivial + intricate (non separable anymore)

$$\rho_{\text{tot}}(R) = \left\langle \rho_{\text{smooth}}(R) + \sum_{i}^{N_{\text{tot}}} \rho_{i}(|\vec{R} - \vec{r_{i}}|) \right\rangle$$

Initial conditions: homogeneous mass and concentration pdfs

Observation+theory constraints

$$\frac{\mathrm{d}^{n} N^{0}}{\mathrm{d}\omega^{n}} = N_{0} \underbrace{\frac{\mathrm{d}\mathcal{P}_{V}^{0}(\vec{x})}{\mathrm{d}V}}_{\mathrm{spatial \ distrib.}} \times \underbrace{\frac{\mathrm{d}\mathcal{P}_{m}^{0}(m)}{\mathrm{d}m}}_{\mathrm{mass \ distrib.}} \times \underbrace{\frac{\mathrm{d}\mathcal{P}_{c}^{0}(c,m)}{\mathrm{d}c}}_{\mathrm{concentration \ distrib.}}$$

Intricate final phase space

$$rac{\mathrm{d}^n ar{N}}{\mathrm{d}\omega^n} = rac{ar{N}_{\mathrm{tot}}}{ar{K}_w} rac{\mathrm{d}ar{\mathcal{P}}_V(ec{x})}{\mathrm{d}V} imes rac{\mathrm{d}ar{\mathcal{P}}_m(m(ec{x}))}{\mathrm{d}m} imes rac{\mathrm{d}ar{\mathcal{P}}_c(c,m(ec{x}))}{\mathrm{d}c}$$

(Analytical) properties of dark matter halos

- * DM halos have similar profiles (e.g. NFW, Einasto) scale invariance in non-linear shaping
- → 1-parameter class of model (scale invariance see e.g. NFW '95-'96, etc.)
- => Cosmological mass → halo parameters (concentration given profile shape)
- * Scatter in concentration for a given cosmological halo mass
- → Log-normal distribution of concentration (e.g. Bullock+ '01) with scale-invariant dispersion

Caution: valid for halos in flat background (not subhalos after accretion)

* Mass function from peak statistics theory (Press&Schechter '74, Bond+'86-91, etc.)

Sources of tidal stripping

- 1. Tidal field of the host
- 2. Baryonic disk shocking
- 3. Direct encounters with stars

+ Disruption criterion: $r_t/r_s < \varepsilon_t$

Guesses for ε_t ?

- \rightarrow Hayashi+'04: $\varepsilon_{t} \sim 1$
- \rightarrow van Den Bosch+'15: ε_t <1
- \rightarrow Physical principles: $\varepsilon_t << 1$

Fragile subhalos: ε_t =1 Resilient subhalos: ε_t =0.01

Tidal field of the host

Binney & Tremaine '08 [Also, Tormen+, Springel+'08]

$$\ddot{x} = \frac{Gm}{x^2} - \frac{GM}{(R-x)^2} - \omega^2 \{ (\mu/m)R - x \} = 0$$

$$r_t = \left\{ \frac{m(r_t)}{3M(R)\left(1 - \frac{1}{3}\frac{\mathrm{d}\ln M(R)}{\mathrm{d}\ln R}\right)} \right\}^{1/3} R$$

Disk shocking

More efficient for big subhalos (impulsive shocks)

$$\delta E = E_{\text{after}} - E_{\text{before}}$$

$$\delta E > |\Phi(r)|$$
?

$$\left\langle \frac{\delta E}{m_{\chi}} \right\rangle = \frac{2}{3} \frac{g_{\rm d}^2}{V_z^2} A(\eta) r^2$$

Impulse approximation
+ adiabatic invariance for central regions
(crossing timescale >> internal orbital period)
[Weinberg'91, Gnedin, Ostriker'98, etc.]

Encounters with individual stars

Approximate analytical results for 2 extended objects by Gerhard & Fall'83.

Extrapolations used several times in context of DM (incl. PBHs), e.g.: Carr+'93,

Green+'05, etc.

Simulations: Angus+'07, Goerdt+'07, Schneider+'10, Delos'19

Fully analytical result (improved wrt G&F)

$$\delta E = \frac{1}{2} (\delta \mathbf{v})^2 + \mathbf{v} \cdot \delta \mathbf{v}$$

$$(\delta \mathbf{v})^{2}(\mathbf{r}) = \left(\frac{2G_{\mathrm{N}}m_{\star}}{v_{\mathrm{r}}b}\right)^{2} \left[I^{2} + \frac{b^{2}(1-2I) - 2I\mathbf{r} \cdot \mathbf{b}}{(\mathbf{r} + \mathbf{b})^{2} - (\mathbf{r} \cdot \hat{\mathbf{e}}_{v_{\mathrm{r}}})^{2}}\right]$$

(see Facchinetti+'22)

More efficient for small subhalos (stellar masses + impulsive shocks)

Caution: tricky part is statistics

(see also Delos, Stücker+'21-23)

Tidal stripping: all effects

Spatial distribution of subhalos with baryonic-dependent tidal stripping (MW)

Tidal stripping: all effects

Spatial dependence of mass function (tidal selection of high concentrations)

Inner mass function

Outer mass function

Tidal stripping: all effects

$$\rho_{\rm tot}(R) = \left\langle \rho_{\rm smooth}(R) + \sum_{i}^{N_{\rm tot}} \rho_i(|\vec{R} - \vec{r_i}|) \right\rangle \xrightarrow{\rm smooth}^{\rm limit} \rho_{\rm smooth}(R) + \rho_{\rm sub}(R)$$

$$\frac{\mathrm{d}^n \bar{N}}{\mathrm{d}\omega^n} = \frac{\bar{N}_{\mathrm{tot}}}{\bar{K}_w} \frac{\mathrm{d}\bar{\mathcal{P}}_V(\vec{x})}{\mathrm{d}V} \times \frac{\mathrm{d}\bar{\mathcal{P}}_m(m,\vec{x})}{\mathrm{d}m} \times \frac{\mathrm{d}\bar{\mathcal{P}}_c(c,m,\vec{x})}{\mathrm{d}c}$$

Take home:

Tidal selection of concentrated objects in hosts (resilient to tides) => spatial dependence of mass and concentration pdfs [observed in simulations]

=> 3 Subhalos much lighter than intitial cutoff mass (tidal mass function shifted to the left)

[Limitation: disruption criterion could be improved] [See e.g. Delos, Stücker+'22-23]

Applications to gamma-ray searches

Subhalo searches in the Milky-Way

Fermi-LAT '19

Detailed spatial
+ mass +
concentration
pdfs matter!

1525 unassociated sources in 4FGL

- → Subhalos ? [spectral analysis] [e.g. Belikov+'12, Bertoni+'15, Mirabal+'16, Schoonenberg+'16, Hooper+'17, Coronado-Blazquez+'19, etc.]
- → A few subhalo candidates

Sommerfeld effect in external targets

$$\epsilon_v \equiv rac{v}{lpha_{
m D} \, c} \quad {
m and} \quad \epsilon_\phi \equiv rac{m_\phi}{lpha_{
m D} \, m_\chi}$$

Enhancement at small velocity

→ Subhalo contrib. dominates

Gamma-ray searches of MW subhalos

Foreground model

Bg/fg model vs data from Fermi-LAT+'12

Results:

- * Best angular region: ~10°-20° from GC
- * P(1 subhalo) before smooth halo ~ 0
- * P(1 subhalo / 20 yrs) ~ 0.95 after smooth halo detected (10 yrs)
- * Need to go for extended source searches (~1°)

Facchinetti+'20 Expected number of detected subhalos after 10 yrs

Sommerfeld enhancement

$$\epsilon_v \equiv rac{v}{lpha_{
m D} \, c} \quad {
m and} \quad \epsilon_\phi \equiv rac{m_\phi}{lpha_{
m D} \, m_\chi}$$

Lacroix+'22 [see also Facchinetti+'22]

Results:

- * Huge boost factors (> 3 OM)
- * Exacerbate/revert hierarchy btw targets

Take home

- * DM subhalos connect DM properties and primordial PS (=> DM candidate + inflation model)
- * Different DM candidates => different properties on subgalactic scales
- * Subhalo (impacts on DM) searches require spatial+mass+concentration distributions over full mass range
- => challenging with simulations, not extrapolable to dynamically constrained objects (e.g. MW)
- * (Semi)-analytical population models to the rescue (with simplifying assumptions)
 - → Rely on physical principles + self-consistency (e.g. smooth/subhalo separation)
 - → no resolution limit
 - → no cosmology limit
 - → can account for detailed properties of constrained target hosts
 - → complementary to simulations
- * Predictive: spatial dependence of concentration+mass function (selection effect), flattening of spatial distribution
- * Fast + flexible + can be used to optimize search strategies for any DM candidate [+ ongoing improvements]
- * Effective: e.g. gamma-ray predictions, lensing searches, etc.

Backup

DM subhalos: connecting fundamental unknowns

Origin of cosmological perturbations

→ Primordial power spectrum (PS)

(on scales much lower than CMB+LSS can touch)

Nature and origin of dark matter

DM: - grows primordial perturbations (matter PS)

- imprints its own features (interactions, etc.)
- might even generate additional perturbations
- → Smallest dark structures carry invaluable information

Concentration

$$\rho_{\text{nfw}}(r) = \rho_s \frac{(r/r_s)^{-1}}{(1+r/r_s)^2}$$

2 free parameters

$$m_{200} = \frac{4\pi}{3} \left(200 \,\rho_c\right) r_{200}^3$$

1 constraint (mass + volume)

2nd constraint (concentration)

Physical meaning: (central density / background density)^{1/3}

=> decreases with redshift! (increases with time from collapse)

Concentration

$$\rho_{\text{nfw}}(r) = \rho_s \frac{(r/r_s)^{-1}}{(1+r/r_s)^2}$$

2 free parameters

$$m_{200} = \frac{4\pi}{3} \left(200 \, \rho_c\right) r_{200}^3$$

1 constraint (mass + volume)

$$c_{200} = \frac{r_{200}}{r_{-2}}$$

2nd constraint (concentration)

Bullock+'01 model + refinements in Maccio+'08, Prada+'11, Sanchez-Conde+'12, Okoli+'16, Diemer+'19

$$\bar{c}_{200}(m_{200}, z) = K_{200} \left[\frac{\rho_{\rm c}(z_c)}{\rho_{\rm c}(z)} \right]^{1/3}$$

$$m_{200}(z) = G_z \, m_*(z_c)$$

$$\sigma(m_*(z_c)) = \sigma_c^0 D_+(z)$$

Halo mass function: Press+'74, Bardeen+'86, Bond+'91, Lacey+'93, Cole+'93, Sheth+'99, etc.

$$P_{\rm m}(k,z) = \frac{8\pi^2 k}{25} \left\{ \frac{\mathrm{d}_1(z)}{\Omega_{\rm m,0} H_0^2} T(k) \right\}^2 \mathcal{A}_S \left(\frac{k}{k_0} \right)^{n_s - 1} \longrightarrow S(R) \equiv \sigma^2 = \frac{1}{2\pi^2} \int_0^{1/R} \mathrm{d}k \, k^2 \, P_{\rm m}(k,z=0)$$

Halo mass function: Press+'74, Bardeen+'86, Bond+'91, Lacey+'93, Cole+'93, Sheth+'99, etc.

Halo mass function: Press+'74, Bardeen+'86, Bond+'91, Lacey+'93, Cole+'93, Sheth+'99, etc.

$$f(\omega_2, S(R_2) \mid \omega_1, S(R_1)) = \frac{\Delta \omega}{\sqrt{2\pi} \Delta S^{3/2}} \exp\left(-\frac{(\Delta \omega)^2}{2\Delta S}\right)$$

Adapted from Lacey & Cole

$$\frac{\mathrm{d}N(m,M)}{\mathrm{d}m} = \frac{1}{m} \left[\sum_{i=1,2} \gamma_i \left(\frac{m}{M} \right)^{-\alpha_i} \right] \exp \left\{ -\beta \left(\frac{m}{M} \right)^{\zeta} \right]$$

Absolute number + subhalo mass fuction for :

- any cosmology
- any host mass / cutoff mass
- any subhalo layer

 \Rightarrow slope \sim 1.95 (Λ CDM)

Tidal evolution of inner profiles

Inner shape is preserved, but with decreased inner density [also e.g. Penarrubia '08, Delos' 19, Errani+'21]

→ Currently not included in model

Comparisons with simulations

Spatial distribution of subhalos M > 1.e6 M_{sun}

PDF distance to most "luminous" subhalo

Hütten+'19 with Clumpy code [Charbonnier+'11] [comparison with Phat Elvis, Kelley+'19]

Annihilation profile in MW with subhalos

Impact on targets hierarchy

Lacroix+'22 [see also Facchinetti+'22]

Ultracompact minihalos

Abellan & Facchinetti '23