Status of the LUX-ZEPLIN (LZ) Experiment

TAUP 2023

Vienna, Austria

Billy Boxer (UC Davis)

bboxer@ucdavis.edu

On behalf of the LZ Collaboration 28th August 2023

LZ Overview

Dual Phase Time Projection Chamber (TPC)

Primary scintillation (light) -> S1

Secondary scintillation (induced from free charge) -> S2

3D reconstruction using S2 top PMT array hit pattern (X,Y) and from drift time (Z) -> allows for fiducilisation

ER/NR discrimination via S2/S1 ratio

The LZ Liquid Xenon (LXe) TPC

Primary goal:

 Direct detection for WIMP dark matter via low energy nuclear recoils

Requirements:

- Large target mass
- Low energy threshold

- 1.5 m diameter x 1.5 m height
- 7 tonne of active liquid xenon
- 494, 3" PMTs split between top and bottom array
- 4-high voltage wire mesh electrodes:
 - Drift field
 - Extraction region
- PTFE Field cage
- PTFE coverage for increased light collection

The LZ Detector

The LZ experiment, NIM A953 (2020)163047

LZ is located in the Davis cavern at Sanford Underground Research Facility (SURF) in Lead, South Dakota

~1 mile underground -> muon flux reduced by O(10⁶), resulting in radiogenic backgrounds being the dominant contributor to the background

Skin: Primarily a gamma-ray veto

2 t of LXe surrounding TPC instrumented with
 131 1" & 2" PMTs

Outer Detector: Primarily a neutron veto

- 17 t Gd loaded liquid scintillator outfitted in
 120 t water, read out by 120 8" PMTs
- Neutron tagging efficiency: 89%

First Science Run

Stable detector conditions

- Drift field: 193 V/cm
- Extraction field: 7.3 kV/cm in gas
- > 97 % of PMTs operational
- Liquid temperature (174.1 K)
- Gas Pressure (1.791 bar)
- Liquid level stable within 10 microns

Continuous purification of Xe

3.3 t/day through hot getter

Electron lifetime: 5 - 8 ms

Bias mitigation: cuts developed on calibration data and assessed on background side bands + vetoes'

First Science Run: TPC Calibrations

Photon detection efficiency:

 $g1 = 0.114 \pm 0.002 \text{ phd/photon}$

Charge gain:

 $g2 = 47.1 \pm 1.1$ phd/electron

Band fits performed with NEST v2.3.71

99.9% discrimination of beta backgrounds under NR band median achieved

First Science Run: Backgrounds

Source	Expected Events
β decays + det ER	218 ± 36
$ u \mathrm{ER}$	27.3 ± 1.6
$^{127}\mathrm{Xe}$	9.2 ± 0.8
$^{124}\mathrm{Xe}$	5.0 ± 1.4
$^{136}\mathrm{Xe}$	15.2 ± 2.4
$^8{ m B~CE} u { m NS}$	0.15 ± 0.01
Accidentals	1.2 ± 0.3
Subtotal	276 ± 36
³⁷ Ar	[0, 291]
Detector neutrons	$0.0^{+0.2}$
$30\mathrm{GeV/c^2~WIMP}$	-
Total	_

Backgrounds are modelled using energy deposit + detector response simulations¹

(1) https://doi.org/10.1016/j.astropartphys.2020.102480

First Science Run: Data Selection Cuts

Cuts developed using calibration data and sideband regions outside the WIMP ROI

events vetoed by skin (mostly ¹²⁷Xe)

events vetoed by OD

First Science Run: Final Data Set

First Science Run: PLR Fits

Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment Phys. Rev. D 108, 012010 (2023)

First Science Run: WIMP Search (Spin-Independent)

28/08/2023

First Science Run: WIMP Search (Spin-Dependent)

Grey uncertainty band represents uncertainty on Xe form factor¹

(1) P. Klos, J. Menéndez, D. Gazit, and A. Schwenk Phys. Rev. D 88, 083516 (2013)

First dark matter search result from the LZ Experiment Phys. Rev. Lett. 131, 041002 (2023)

Beyond The WIMP-Search

Outlook For LZ

There's much more data to come! Planning for a total 1000 live days (x 17 more exposure than SR1)

Current limit compared to projected sensitivity for 1000-day exposure

LZ (LUX-ZEPLIN) Collaboration, 37 Institutions

250 scientists, engineers, and technical staff

https://lz.lbl.gov/

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
 - University of Rochester
- University of Sheffield
- University of Sydney

UK

- University of Texas at Austin
 - University of Wisconsin, Madison

Science and Technology Facilities Council

Thanks to our sponsors and participating institutions!

Thank you!

Thanks to our sponsors and 37 participating institutions!

U.S. Department of Energy Office of Science

Backup: LZ Cryogenics

Thermosyphon principle

Cooling provided by thermosyphon technology (also used in LUX)

Backup: Xenon Circulation System

Backup: Outer Detector Efficiency

Neutron capture on Gd produces gamma emission of up to 8.5 MeV

Time delay between neutron scatter in LXe and capture is O(0.1 - 1 ms)

OD neutron tagging settings:

- ≥ 200 keV
- Δt ≤ 1200 µs

Live-time hit: 5%

Backup: ³⁷Ar

- 37 Ar is a significant background in early LZ data ($t_{1/2} = 35 \text{ d}$)
- Occurs naturally in atmosphere via e.g. $Ca(n,\alpha)Ar^1$, but suppressed during Xe purification by charcoal chromatography
- Produced by cosmic spallation of natural xenon
- Estimating exposure during transport allows calculation of expected activity
 - ➤ We expect ~100 decays of ³⁷Ar in SR1 with a large uncertainty.²

Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment Phys. Rev. D 108, 012010 (2023)

20

⁽¹⁾ R.A. Riedmann, R. Purtschert, Environ. Sci. Technol. (2011) 45(20), 8656-8664

⁽²⁾ LZ Collaboration, Phys. Rev. D 105, 082004 (2022), 2201.02858

Backup: Radon

- Naked 214Pb β-decays are the main WIMP background
- Rn emanating from detector materials into TPC xenon
- Constrain β -decay rate with two methods:
 - \circ Rn-chain α tagging
 - Spectral fit of all internal BGs outside of energy ROI

Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment Phys. Rev. D 108, 012010 (2023)

Counts

Backup: Accidental Coincidences

- Isolated S1s & S2s can accidentally combine to form WIMP ROI events
- Data quality cuts successfully developed to address this background
- To construct PDF, stitch isolated raw pulses together for fake events. Normalised using events with unphysical drift time
- (i.e. drift time > TPC height)
- Expect 1.2 ± 0.3 events in SR1

Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment Phys. Rev. D 108, 012010 (2023)

Backup: TPC Energy Response (Doke PLot)

S1s & S2s position-corrected using ^{131m}Xe background, ^{83m}Kr calibration.

Doke plot constructed with mono-energetic electron recoil peaks

Backup: Limit Shape

Downward fluctuation in the observed upper limit (**red ellipse**) is a result of the deficiency of events under the Ar-37 population (**yellow ellipse**).

Calibration (both DD and CH3T) and Xe127 M-shell counts (**green ellipse**) in this region are as expected with our signal acceptance model.

=> Deficit in WIMP search data appears consistent with under-fluctuation of backgrounds