First WIMP dark matter search results from XENONnT

Zihao Xu
On behalf of the XENON collaboration
Columbia University, New York City
TAUP Aug $28^{\text {th }}$ 2023, Vienna

Other XENON talks and posters

Parallel talks:

- Radon emanation suppression by surface coating, Hardy Simgen, 28 Aug 6:15 PM ${ }^{[2]}$
- Search for solar ${ }^{8} \mathbf{B}$ neutrinos with XENONnT, Christian Wittweg, 29 Aug 2:00 PM ${ }^{[1]}$
- Exploring New Physics up to the MeV energy scale with XENONnT, Maxime Pierre, 29 Aug 2:15 PM ${ }^{[1]}$
- XENONn'T experiment and Machine Learning, Christopher Tunnel, 29 Aug 5:15 PM ${ }^{[2]}$

Posters:

- Krypton Removal for the XENON Dark Matter Project, Johanna Jakob
- Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Shengchao Li
- XENONnT Radon Removal System, David Koke
- The physics-driven surface background model for XENONnT, Cecilia Ferrari
- Ultra-clean four cylinder magnetically-coupled piston pump for noble gas experiments, Andria Michael
[1] Hörsaal 7 lecture hall
[2] BIG-Hörsaal lecture hall

XENON collaboration

=

~ 180 scientists

XENON collaboration

OCHICAGO
Chicago
UCSanDiego

Rice
$-\underset{\sim}{\text { PUNIVERSITY }}$
Purdue

27 institutions

Dual-phase xenon TPC

Detection

S1: prompt scintillation in LXe
S2: proportional scintillation in GXe

Event reconstruction

Z: drift time \times drift velocity
\mathbf{X}, \mathbf{Y} : from PMT pattern
Combined energy scale: W (cS1 / g1 + cS2 / g2)

Particle discrimination

Electronic recoil (ER): beta, gamma
Nuclear recoil (NR): neutron, WIMP

In the WIMP search ROI, $(\mathbf{S} 2 / \mathbf{S} 1)_{\mathrm{ER}}>(\mathbf{S} 2 / \mathbf{S 1})_{\mathrm{NR}}$

XENONnT at LNGS

ER/NR Calibrations

${ }^{220} \mathrm{Rn}$

- Uniform distribution in the TPC
- The beta decays from its daughter ${ }^{212} \mathrm{~Pb}$
- Has the same spectrum as the major ER background ${ }^{214} \mathrm{~Pb}$
- Use it to fit the ER response model
${ }^{37} \mathbf{A r}$
- Uniform distribution in the TPC
- Fully removed by distillation after the calibration ${ }^{[1]}$
- Use its 2.8 keV ER peak to validate low-energy ER response

${ }^{241} \mathrm{AmBe}$

- Use it to fit the NR response model
- Select neutrons by tagging 4.4 MeV coincident gamma in neutron veto

[1] Progress of Theoretical and Experimental Physics, Volume 2022, Issue 5, May 2022, 053H01

Signal model

Phys. Rev. Lett. 131, 041003

Detection efficiency

- Determined by S1 3-fold threshold
- Simulations and data-driven methods give consistent results

Selection acceptance

- Data quality and anti-AC (accidental coincidence) cuts
- \quad Flat after $20 \mathrm{keV}_{\mathrm{NR}} \sim 80 \%$

Region of interest

- $\quad \mathrm{cS} 1 / \mathrm{PE} \in[0,100]$
- $\quad \mathrm{cS} 2 / \mathrm{PE} \in\left[10^{2.1}, 10^{4.1}\right]$
- $\quad \Rightarrow$ Energy $\in[3.3,60.5] \mathrm{keV}_{\mathrm{NR}}$ or $[1.0,14.0] \mathrm{keV}_{\mathrm{ER}}($ efficiency $>10 \%)$

Background models

Electronic recoils (ERs)

- Dominant background in WIMP search
- $\sim 50 \%$ from ${ }^{214} \mathrm{~Pb}, \sim 20 \%$ from solar neutrino, $\sim 30 \%$ from (gamma from material $+{ }^{85} \mathrm{Kr}+{ }^{136} \mathrm{Xe}$)

Nuclear recoils (NRs)

- Radiogenic neutrons not tagged by NV ~ 1.1 events
- NRs by neutrinos ($\mathrm{CE} v \mathrm{NS}$) ~ 0.2 event

Surface

- ${ }^{210} \mathrm{~Pb}$ decays from ${ }^{222} \mathrm{Rn}$ decay chain at the wall with significant electron loss due to non-uniformity of drift field
- Mainly suppressed by fiducial volume selection

Accidental coincidence (AC)

- Events whose S1 S2 are not from the same physical events
- Use dedicated anti-AC cuts including machine-learning cut to
 suppress

WIMP unblinding results

					-	on	C	$\begin{aligned} & \mathrm{CGeV} \\ & \mathrm{IMP} \end{aligned}$
-				10^{4}		Rev	31, 0	
	Nominal		st fit					
			Signal-like					
ER	134	$135{ }_{-11}^{+12}$	0.92 ± 0.08					
Neutrons	$1.1_{-0.5}^{+0.6}$	1.1 ± 0.4	0.42 ± 0.16	可				
CELNS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006	$\stackrel{\sim}{3}$				
AC	4.3 ± 0.9	$4.4{ }_{-0.8}^{+0.9}$	0.32 ± 0.06	กู 10^{3}			egion	
Surface	14 ± 3	12 ± 2	0.35 ± 0.07					
Total background	154	152 ± 12	$2.03_{-0.15}^{+0.17}$					
WIMP	\ldots	2.6	1.3					
Observed	...	152	3					
					40	60	80	100

WIMP unblinding results

- No significant excess is observed
- Upper limit with 90% CL on spin-independent WIMP-nucleon cross section is shown
- Power constraint limit chops at median of sensitivity band
- Minimal upper limit is $2.58 \times 10^{-47} \mathrm{~cm}^{2}$ for 28 $\mathrm{GeV} / \mathrm{c}^{2}$ WIMP

Summary and outlook

$>$ Compared to XENON1T, XENONnT SR0 has

- More xenon (SR0 exposure $=4.2$ tonne $\times 95$ days \sim total XENON1T exposure $)$
- Lowest ER background rate ever
- Water Cherenkov neutron veto
- Higher electron lifetime
$>$ A blinded analysis shows no significant excess
$>$ SR1 is ongoing, and has
- Lower ${ }^{214} \mathrm{~Pb}$ background rate ($\sim 50 \%$ SR0 level)
- More exposure
- Improved analysis techniques

$>$ SR $0+$ SR1 combined WIMP analysis is on the way
> SR1+ we will insert Gd into neutron veto to further improve tagging efficiency

Thank you!

Zihao Xu
On behalf of the XENON collaboration
Columbia University, New York City
TAUP Aug $28^{\text {th }}$ 2023, Vienna

ER response

向

NR response

Spin-dependent cross section

How neutron veto works

AmBe selection

Unblinding strategy

Events in FV

- Events in ER ROI

Blinded Region
$200 \mathrm{GeV} / \mathrm{c}^{2}$ WIMP

- Events in WIMP ROI - 2.3 keV ER peak

WIMP unblinding results

Anti-AC cuts

${ }^{37}$ Ar removal

