First WIMP dark matter search results from XENONnT

Zihao Xu On behalf of the XENON collaboration Columbia University, New York City TAUP Aug 28th 2023, Vienna

Other XENON talks and posters

Parallel talks:

- Radon emanation suppression by surface coating, Hardy Simgen, 28 Aug 6:15 PM [2]
- Search for solar ⁸B neutrinos with XENONnT, Christian Wittweg, 29 Aug 2:00 PM ^[1]
- Exploring New Physics up to the MeV energy scale with XENONnT, Maxime Pierre, 29 Aug 2:15 PM [1]
- **XENONnT experiment and Machine Learning**, Christopher Tunnel, 29 Aug 5:15 PM ^[2]

Posters:

- Krypton Removal for the XENON Dark Matter Project, Johanna Jakob
- Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Shengchao Li
- XENONnT Radon Removal System, David Koke
- The physics-driven surface background model for XENONnT, Cecilia Ferrari
- Ultra-clean four cylinder magnetically-coupled piston pump for noble gas experiments, Andria Michael

[1] Hörsaal 7 lecture hall

[2] BIG-Hörsaal lecture hall

XENON collaboration

~ 180 scientists

XENON collaboration

27 institutions

Dual-phase xenon TPC

Detection

S1: prompt scintillation in LXe

\$2: proportional scintillation in GXe

Event reconstruction

Z: drift time \times drift velocity

X, Y: from PMT pattern

Combined energy scale: W (cS1 / g1 + cS2 / g2)

Particle discrimination

Electronic recoil (ER): beta, gamma

Nuclear recoil (NR): neutron, WIMP

In the WIMP search ROI, $(S2/S1)_{ER} > (S2/S1)_{NR}$

XENONnT at LNGS

Xe target mass (X3 XENON1T)

~ 6 tonne in active volume

~ 4 tonne in SR0 WIMP fiducial volume

Electric fields

Drift field = 23 V/cm

Extraction field = 2.9 kV/cm

(extraction efficiency ~ 50%)

XENONnT upgrades

Neutron veto

Water Cherenkov neutron veto

~ 50% tagging efficiency with only 1.6% exposure loss

Radon column

Eur. Phys. J. C 82, 1104 (2022)

Continuous distillation to remove ²²²Rn

(dominant background from the daughter ²¹⁴Pb)

Lowest ²²²Rn background ever: < 1 μBq/kg (SR1), 1.8 μBq/kg (SR0)

LXe purification

Eur. Phys. J. C 82, 860 (2022)

High-flow purification to remove electro-negative impurities

~ 2 L/min flow (~ 18 h to exchange the full liquid xenon volume)

Electron lifetime ~ 15 ms (only ~ 14% charge loss for a full drift length 1.5 m)

ER/NR Calibrations

²²⁰Rn

- Uniform distribution in the TPC
- The beta decays from its daughter ²¹²Pb
- Has the same spectrum as the major ER background ²¹⁴Pb
- Use it to fit the ER response model

³⁷Ar

- Uniform distribution in the TPC
- Fully removed by distillation after the calibration [1]
- Use its 2.8 keV ER peak to validate low-energy ER response

²⁴¹AmBe

- Use it to fit the NR response model
- Select neutrons by tagging 4.4 MeV coincident gamma in neutron veto

^[1] Progress of Theoretical and Experimental Physics, Volume 2022, Issue 5, May 2022, 053H01

Signal model

Detection efficiency

- Determined by S1 3-fold threshold
- Simulations and data-driven methods give consistent results

Selection acceptance

- Data quality and anti-AC (accidental coincidence) cuts
- Flat after $20 \text{ keV}_{NR} \sim 80\%$

Region of interest

- cS1/PE = [0, 100]
- $cS2/PE = [10^{2.1}, 10^{4.1}]$
- \Rightarrow Energy \in [3.3, 60.5] keV_{NR} or [1.0, 14.0] keV_{ER} (efficiency > 10%)

Background models

Electronic recoils (ERs)

- Dominant background in WIMP search
- $\sim 50\%$ from 214 Pb, $\sim 20\%$ from solar neutrino, $\sim 30\%$ from (gamma from material + 85 Kr + 136 Xe)

Nuclear recoils (NRs)

- Radiogenic neutrons not tagged by NV ~ 1.1 events
- NRs by neutrinos (CEvNS) ~ 0.2 event

Surface

- 210Pb decays from 222Rn decay chain at the wall with significant electron loss due to non-uniformity of drift field
- Mainly suppressed by fiducial volume selection

Accidental coincidence (AC)

- Events whose S1 S2 are not from the same physical events
- Use dedicated anti-AC cuts including machine-learning cut to suppress

WIMP unblinding results

	Nominal	minal Best fit	
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16
$CE\nu NS$	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4^{+0.9}_{-0.8}$	0.32 ± 0.06
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total background	154	152 ± 12	$2.03_{-0.15}^{+0.17}$
WIMP	•••	2.6	1.3
Observed	• • •	152	3

WIMP unblinding results

- No significant excess is observed
- Upper limit with 90% CL on spin-independent
 WIMP-nucleon cross section is shown
- Power constraint limit chops at median of sensitivity band
- Minimal upper limit is 2.58×10^{-47} cm² for 28 GeV / c² WIMP

Summary and outlook

- Compared to XENON1T, XENONnT SR0 has
 - More xenon (SR0 exposure = 4.2 tonne × 95 days ~ total XENON1T exposure)
 - Lowest ER background rate ever
 - Water Cherenkov neutron veto
 - Higher electron lifetime
- ➤ A blinded analysis shows no significant excess
- > SR1 is ongoing, and has
 - Lower ²¹⁴Pb background rate (~ 50% SR0 level)
 - More exposure
 - Improved analysis techniques
- ➤ SR0+SR1 combined WIMP analysis is on the way
- > SR1+ we will insert Gd into neutron veto to further improve tagging efficiency

Thank you!

Zihao Xu On behalf of the XENON collaboration Columbia University, New York City TAUP Aug 28th 2023, Vienna

ER response

NR response

Spin-dependent cross section

How neutron veto works

AmBe selection

Unblinding strategy

WIMP unblinding results

Anti-AC cuts

