

Quenching factor measurement of low-energy Na recoils in ultra-pure NaI(TI) crystal

- Y. Urano ^{1,2}, K. Fushimi ³, K. Hata ⁴, Y. Kawai ³, S. Konishi ⁵, K. Kotera ³,
- S. Kurosawa ^{2,6,7}, K. Mukai ⁵, Y. Ogino ², R. Orito ³, T. Sakabe ⁵
- 1. Department of Mat. Sci., Graduate School of Eng., Tohoku Univ.
- 2. IMR, Tohoku Univ.
- 3. Department of Sci. and Tec., Tokushima Univ.
- 4. RCNS, Tohoku Univ.
- 5. IAE, Kyoto Univ.
- 6. NICHe, Tohoku Univ.
- 7. Institute for Laser Eng., Osaka Univ.

PICOLON project

PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino)

- ➤ Dark matter search experiment using NaI(TI) scintillator
- ➤ We succeeded in developing high-purity NaI(TI) crystals with a low background equal to or less than the DAMA/LIBRA group.^[1]

For more information, please see poster presentation by Kenta Kotera.

Quenching factor: QF

- > Nuclear recoils are observed at lower energies than electron recoils with the same energy.
- \triangleright Light yield ratio of nuclear recoil L_{nr} to electron recoil L_{er}

$$QF = L_{nr} / L_{er} = E_{ee} / E_{nr}$$

 $E_{\rm ee}$: Electron equivalent energy

 E_{nr} : Nuclear recoil energy

Necessary to calibrate the nuclear recoil energy by WIMP

Experimental values of QF

It is necessary to measure the low-energy side with high accuracy for WIMP search.

- Smaller than theoretical value
- Discrepancy of the reported values from several groups
- ➤ QF absolute value and its energy dependence in the low-energy region (~100 keV) have been discrepant in previous studies.
- ➤ We should verify whether the variation is due to the individual crystal differences or the effect of systematic errors.

Experimental values of QF^[2]

Motivation

- ➤ In general, the higher the impurity concentration in the crystal, the lower the light output.
- Necessary to measure using crystals with low radiation impurity concentration

We measure the QF of the NaI(TI) scintillator developed by PICOLON group.

➤ We investigate individual crystal differences and the effect of different energy calibration methods on QFs.

Our crystal

2.54 cm

2.54 cm

	Our crystal ^[3]	DAMA/LIBRA
²³² Th (ppt)	0.4 ± 0.5	0.5-0.7
²³⁸ U (ppt)	4.7 ± 0.3	0.7-10
²¹⁰ Pb (µBq/kg)	29.4 ± 6.6	5-30

Neutron energy: 2.45 MeV (DD Nuclear Fusion)

Neutron intensity : 5×10^6 n/s (Neutron source)

NaI(TI) scintillator : developed by PICOLON + H11284-100 (PMT, Hamamatsu)

Liquid scintillator (LS): EJ-301 (Eljen Technology) + R6091 (PMT, Hamamatsu)

Distance Neutron source - NaI(TI): 90 cm

Distance NaI(TI) - LS: 50 cm (TOF)

Institute of Advanced Energy, Kyoto Univ.

Energy calibration method

NaI(TI) detector calibration

> Source:

¹³³Ba (6.5 keV, 30.8 keV, 35.1 keV)

Simulation of ¹³³Ba source (Geant4.10.5)

Fitting result for the three peaks of ¹³³Ba

➤ NaI(TI) detector was energy calibrated separately at 0-6.5 keV_{ee} and 6.5-35.1 keV_{ee}.

```
0-6.5 \text{ keV}_{\text{ee}}

Energy [\text{keV}_{\text{ee}}] = 0.1107 \times Charge [pC]

6.5-35.1 \text{ keV}_{\text{ee}}

Energy [\text{keV}_{\text{ee}}] = 0.09471 \times Charge [pC] + 0.9376
```


➤ The relationship between light intensity and energy of the NaI(TI) scintillator is not perfectly linear at low energies.

Analysis methods

PSD (Pulse Shape Discrimination)

NaI(TI)

Mean arrival time < t > was used to discriminate the waveforms.

$$< t> = \frac{\sum_{i=0}^{838} t_i a_i}{\sum_{i=0}^{838} a_i}$$

 a_i : Voltage [mV]

: Time [ns]

Bremsstrahlung X-rays from neutron source

TOF (Time of Flight)

> Time of flight was used to discriminate the particles.

$$TOF = L \sqrt{\frac{m_{\rm n}}{2E}} = t_{\rm LS} - t_{\rm NaI}$$

 $m_{
m n}$: Mass of neutron $t_{
m NaI}$: Signal start time of NaI(TI) $\frac{\varphi}{2}$

 $\it L$: Distance NaI(TI) - LS $\it t_{
m LS}$: Signal start time of LS

E : Energy of incident neutrons

 \sim 23 ns @ L = 50 cm (Neutron TOF)

Energy spectra after analysis by PSD and TOF

Energy spectra depending on the neutron scattering angles were obtained.

Systematic errors

- ➤ Energy calibration error (5 %)
- ➤ Liquid scintillator placement error (11.5~4.7 %)

Calculation of QF

- ➤ The same setup, detector size, and neutron beam structure as in the present experiment were reproduced by Geant4 simulation.
- ➤ Nuclear recoil energies without quenching effects were calculated by Monte Carlo (MC) simulation.

Calculation results of nuclear recoil energy E_{nr} by Geant4 (version 4.10.5) simulation

Scattering	$E_{\mathrm{ee}} \left(\mathrm{keV}_{\mathrm{ee}} \right)$			$E_{\rm nr} ({\rm keV_{nr}})$			
angle	Fit mean	Fit error	Cal error	Place error	MC mean	MC error	QF _{Na} [%]
25°	3.50	±0.39	±0.18	±0.27	19.34	±0.16	18.1 ± 3.0
30°	4.23	±0.24	±0.21	±0.34	27.67	±0.19	15.3 ± 1.9
37.5°	7.47	±0.52	±0.37	<u>±</u> 0.49	41.22	±0.23	18.1 ± 2.1
45°	10.45	±0.43	±0.52	±0.61	59.15	±0.23	17.7 ± 1.6
52.5°	14.05	±0.50	±0.70	±0.73	79.36	±0.33	17.7 ± 1.5
60°	16.45	±1.00	±0.82	±0.89	101.12	±0.36	16.3 ± 1.5

Scattering angle	QF _{Na} [%]
25°	18.1 ± 3.0
30°	15.3 ± 1.9
37.5°	18.1 ± 2.1
45°	17.7 ± 1.6
52.5°	17.7 ± 1.5
60°	16.3 ± 1.5

There were differences in QF results in the low-energy region ($< 30 \text{ keV}_{nr}$).

- > The radiation sources used in previous studies were varied.
 - → Non-linearity in the low energy region of the detector response should be considered.

- We have experimented to measure the QF of the ultra-pure NaI(TI) scintillator developed by PICOLON group.
- We have succeeded in calculating the QF_{Na}.
- We tried to identify the causes of the variation in the previous studies.
 - Differences in QF results at lower energy region due to different energy calibration method
 - Individual crystal differences may be the factor.

- < Future prospects >
- ➤ TI concentration dependence, temperature dependence, and readout photodetector dependence of QF, measurement of QF_I
- > Radioactive impurity concentration dependence

Backup

PICOLON project

PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino)

➤ Dark matter search experiment using NaI(TI) scintillator

	DAMA/LIBRA (NIM A592 (2008) 297.)	Ingot #85 (2020)	Ingot #94 (This work)	Goal
Crystal size	$10.2 \times 10.2 \times 25.4 \text{ cm}^3$	$7.62\phi \times$		
232 Th [μ Bq/kg]	2~31	0.3 ± 0.5	4.6 ± 1.2	<10
²²⁶ Ra [μBq/kg]	8.7~124	1.0 ± 0.4	7.9 ± 4.4	<10
²¹⁰ Po [μBq/kg]	5~30	< 5.7	19 ± 6	< 50

K.Kotera, "Result and analysis for Ingot#94 of PICOLON ultra-pure NaI(TI) crystal" (ICRC2023)

➤ We succeeded in developing high-purity NaI(TI) crystals with a low background equal to or less than the DAMA/LIBRA group.

We are planning to construct 250 kg of NaI(TI) detector within 5 years.^[1]

PICOLON's future plan

Non-linearity of NaI(TI)

- ➤ The relationship between light intensity and energy of the NaI(TI) scintillator is not perfectly linear at low energies.
- Non-linearity in the low energy region of the detector response should be considered.

B. D. Rooney *et al.*, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 44, NO. 3, JUNE 1997

L.Swiderski *et al.*, Nuclear Instruments and Methods in Physics Research A 705 (2013) 42–46

Neutron source

Compact fusion D-D neutron source^[4]

 $D + D \rightarrow {}^{3}He (0.82 MeV) + n (2.45 MeV)$

- $\triangleright \phi$ 35 cm sphere
- $\triangleright \phi$ 8 cm cathode in the center

Water for cooling (5 cm thickness)

Neutron intensity (10⁵-10⁷) can be controlled by cathode voltage

Supported by Zero Emission Energy Research

Institute of Advanced Energy, Kyoto University *Dec.* 6-10th, 2021

Neutron scattering angle vs. Nuclear recoil energy

$$E_{\rm nr} = E_{\rm n} \cdot \left\{ 1 - \left(\frac{m_{\rm n} \cos \theta_{\rm L} + \sqrt{m_{\rm N}^2 - m_{\rm n}^2 \sin^2 \theta_{\rm L}}}{m_{\rm n} + m_{\rm N}} \right)^2 \right\}$$

 $E_{\rm nr}$: Nuclear recoil energy

 $E_{\rm n}$: Energy of incident neutrons

 $\theta_{\rm L}$: Neutron scattering angle

 $m_{
m n}$: Mass of neutron

 $m_{\rm N}$: Mass of target nucleus

Example of NaI(TI)

Data acquisition system

DRS4 (Domino-Ring-Sampler 4) Evaluation Board V5^[5]

Capable of recording waveforms of high-speed signals

- ➤ Sampling rate : 700 MHz
- > Record 2048 points during 2.9 μs

DAQ Trigger

Nal(TI) and LS coincidence

Voltage [mV]

-200

-300

-400

[5] https://www.psi.ch/drs/drs-chip

PSD analysis

PSD by the slow/total

- ➤ In liquid scintillators, neutrons have a more delayed component of scintillation light than gamma rays
- > slow/total was used to discriminate the waveforms.

slow/total =
$$\frac{\int_{30 \text{ ns}}^{300 \text{ ns}} a_t dt}{\int_{0 \text{ ns}}^{300 \text{ ns}} a_t dt}$$
 a_t : Voltage [mV]

slow: Light Amount emitted at 30 ~ 300 ns

total: Total Amount of light emitted at 0 ~ 300 ns

TOF analysis

TOF (Time of Flight)

➤ Particle time of flight was used to discriminate the particles.

$$TOF = L\sqrt{\frac{m_{\rm n}}{2E}} = t_{\rm LS} - t_{\rm NaI}$$

 $m_{\rm n}$: Mass of neutron

L: Distance NaI(TI) - LS

E : Energy of incident neutrons

 $t_{\rm NaI}$: Signal start time of NaI(TI)

 $t_{\rm LS}$: Signal start time of LS

 \sim 23 ns @ L = 50 cm (Neutron TOF)

