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Sub-MeV dark matter: collective excitations
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Sub-MeV mass DM interacts directly with collective excitations (e.g. phonons)

Challenge:  need very low energy thresholds phononphonon
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Optomechanical single phonon detection

Superfluid optomechanical cavities are single phonon detectors

Figure: Kashkanova+ ‘16
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Optomechanical single phonon detection

Superfluid optomechanical cavities are single phonon detectors

Figure: Kashkanova+ ‘16
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Optomechanical systems have demonstrated µeV phonon counting (e.g. Patil et. al. ’22) 

Coupling between acoustic (density) modes and optical modes

    converts ~µeV phonons into ~eV photons

superfluid ⁴He filled optical cavity
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Superfluid optomechanics

At quantum level described by the Hamiltonian:

photons phonon

optomechanical 
coupling
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Superfluid optomechanics

At quantum level described by the Hamiltonian:

pump laser enhances small 𝑔𝑔0 phonon-photon conversion

photons phonon
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Superfluid optomechanics

At quantum level described by the Hamiltonian:

pump laser enhances small 𝑔𝑔0 phonon-photon conversion

photons phonon

Pair of photons interact with single 
phonon mode with energy/wavelength
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Phonon lasing

Superfluid optomechanical systems as dark matter detectors:

 exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy)

 Very low dark matter scattering rate due to restricted phase space
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Phonon lasing

Solution: Phonon lasing
 
•  Stimulated scattering rate proportional to 

 phonon occupation number

• Can be achieved using optomechanical interaction
detected
phonon

pumped 
phonon

Superfluid optomechanical systems as dark matter detectors:

 exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy)

 Very low dark matter scattering rate due to restricted phase space
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Optomechanical detection

Dark matter detector requires optomechanical control 
of two acoustic modes
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Optomechanical detection

1 Lower energy phonon mode        populated via 
optomechanical interaction



Stimulated dark matter scattering 
excites higher energy phonon mode
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Optomechanical detection

2
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Optomechanical detection

3 Optomechanical conversion of         phonon
to photon that is detected with SNSPD 

single photon 
detector
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DM-phonon scattering rate
Initial state phonon number density

Acoustic quality factor: 
3-phonon interaction 
(Grüneisen parameter)

resonantly enhanced

3-phonon interaction
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DM-phonon scattering rate
Initial state phonon number density

Acoustic quality factor: 
3-phonon interaction 
(Grüneisen parameter)

resonantly enhanced

3-phonon interaction

Scattering is between specific initial and final phonon states:

I. Scattering is at fixed momentum transfer, aligned with the cavity:

II. Event rate is independent of cavity volume! (for individually resolved modes)
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ODIN: Optomechanical Dark-matter INstrument

cavity dimensions ~ 30cm x 0.7mm
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ODIN: Optomechanical Dark-matter INstrument

Main detector backgrounds:

• Thermal phonons
(10−5 Hz at T = 4mK and Q = 1010)

• SNSPD dark counts
(~6 × 10−6 Hz)

• Incomplete filtering of pump lasers
(especially 532nm, supressed with filter cavities)

Expected background rate ~1 event/day
cavity dimensions ~ 30cm x 0.7mm
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ODIN: Projected Sensitivity
Initial “baseline” scenario 

“Improved” scenario

Sensitivity primarily determined by:

• Phonon occupation 

• Acoustic Q-factor

• Intrinsic background rate
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Summary

• Superfluid optomechanical systems are single phonon detectors

• Amplification via conversion of ~µeV phonons to ~eV photons

• Phonon lasing enhances dark matter event rate
and enables controlled modulation of signal

• ODIN is projected to be sensitive to ~keV mass dark matter
with cross-sections of O(10−32) cm2

• Further studies to optimise design are ongoing – stay tuned!
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Backup



Peter Cox - University of Melbourne – TAUP 2023

Optical asymmetry

Optical mode spacing (FSR) can be engineered to select amplification/cooling of acoustic modes:
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