Search for solar neutrino and light dark matter in the PandaX-4T experiment

Qing Lin

(on behalf of PandaX collaboration)

University of Science and Technology of China
TAUP, 2023.08.28

PandaX-4T Experiment \& Its first data

$>$ 5.6-tonne liquid xenon detector at CJPL-II;
$>$ 2020-2021: Commissioning run (run0), 95 days;
$>$ 2021-2022: Tritiated methane removal and run1, ~ 160 days

\square Ultrapure water shield: $13 \mathrm{~m}(\mathrm{H}) \times 10 \mathrm{~m}(\mathrm{D}) \sim 900 \mathrm{~m}^{3}$
\square TPC: $1.2 \mathrm{~m}(\mathrm{H}) \times 1.2 \mathrm{~m}(\mathrm{D})$
\square 3-in PMTs: 169 top/199 bottom
\square Sensitive volume: 3.7-tonne

Solar neutrino CEvNS detection in DM experiment

Difficulties of B8 CEvNS search

10% detection $>90 \%$ detection

Low stats of calibration

Waveform simulation

Reassembling data waveform segments

Good match between data and wf-sim in terms of S1/S2 shape, pattern, and waveform "dirtiness".

Machine-Learning based selection

Boosted Decision Tree (BDT)

S1 \& S 2 width
> Spurious charges beside S1\&S2
S2 pulse shape
Width/height

> WF-sim as signal sample;
$>$ Randomly paired S1-S2 as bkg sample;
> 18 variables as BDT input;

Difference of reconstructed positions;
Goodness-of-fit between data and sim;
Top-bottom asymmetry

Background budget

Physical bkg negligible!
Two-hit channel S2 charge spectrum

$\mathrm{N}_{\text {hit }}$	$S 2$ range $[\mathrm{PE}]$	BDT	ER	NR Surf	AC	Total BKG	${ }^{8} \mathrm{~B}$	Obs	
2	$65-230$	pre	0.04	0.10	0.14	62.43	62.71	2.32	$\mathbf{5 9}$
post	0.02	0.04	0.03	1.41	1.50	1.42	$\mathbf{1}$		
3		$65-190$	pre	0.01	0.05	0.08	0.79	0.93	0.42
post	0.00	0.02	0.03	0.02	0.07	0.29	$\mathbf{0}$		

$>\mathrm{AC}$ is the dominant bkg;
$>$ Use data with drift length $>$ max drift length as sideband check;
$>$ Good match between data and model;

S 1 [PE]

Uncertainty analysis

Use secondary S2s or events without S1 for checking sys.

Systematic uncertainties

Uncertainties	2-hit bin	3-hit bin
quality cuts	0.14	0.14
light and charge yield	$\mathbf{0 . 2 9}$	$\mathbf{0 . 3 9}$
accidental bkg	$\mathbf{0 . 3 0}$	$\mathbf{0 . 3 0}$
BDT cut for signal	$\mathbf{0 . 1 4}$	$\mathbf{0 . 1 3}$
BDT cut for bkg	$\mathbf{0 . 1 9}$	$\mathbf{0 . 1 8}$
solar B8-v flux	0.04	0.04

Main S1

Secondary S2

Unblinding

Apply-BDT result

> One event found after unblinding;
$>$ Statistically consistent with our expectation.

N-hit	Total bkg	B8	Data
2	1.50	1.42	1
3	0.07	0.29	0

First B8 CEvNS search in PandaX-4T

Phys. Rev. Lett. 130, 021802

$$
\begin{aligned}
\mathcal{L}= & G\left(\delta_{\epsilon}\right) G\left(\delta_{s}\right) G\left(\delta_{b}\right) G\left(\delta_{\Phi}\right) \\
\times & {\left[\prod_{i} G\left(\delta_{\mathrm{BDT}, s}^{i}\right) G\left(\delta_{\mathrm{BDT}, b}^{i}\right) \frac{\lambda_{i}^{N_{i}}}{N_{i}!} e^{-\lambda_{i}}\right] } \\
\lambda_{i}^{\nu}= & N_{\nu}\left(1+\delta_{s} f_{i}^{\nu}\right)\left(1+\delta_{\epsilon}\right)\left(1+\delta_{\mathrm{BDT}, s}^{i}\right) \\
& +N_{\mathrm{AC}}\left(1+\delta_{b}\right)\left(1+\delta_{\epsilon}\right)\left(1+\delta_{\mathrm{BDT}, b}^{i}\right)+N_{\text {other },} \\
\lambda_{i}^{\chi}= & N_{\chi}\left(1+\delta_{s} f_{i}^{\chi}\right)\left(1+\delta_{\epsilon}\right)\left(1+\delta_{\mathrm{BDT}, s}^{i}\right) \\
& +N_{\nu}\left(1+\delta_{s} f_{i}^{\nu}\right)\left(1+\delta_{\epsilon}\right)\left(1+\delta_{\mathrm{BDT}, s}^{i}\right)\left(1+\delta_{\Phi}\right) \\
& +N_{\mathrm{AC}}\left(1+\delta_{b}\right)\left(1+\delta_{\epsilon}\right)\left(1+\delta_{\mathrm{BDT}, b}^{i}\right)+N_{\text {other },}
\end{aligned}
$$

> Profile Likelihood Ratio method, combining 2 -hit and 3 -hit data;
> Most stringent limit to solar neutrino flux using CEvNS channel;
> Also updated the GeV DM upperlimit.

S2-only approach

Cathode event and gas event

Background for S2-only data

g2=17.9 PE/e

Number of electrons

TABLE I. Nominals and background-only best-fits of the background components in the US2 candidates.

	Nominal	Best-fit
Cathode	41.6 ± 10.6	63.9 ± 9.1
MD	$6.9^{+9.0}$	17.7 ± 5.3
Solar ν	10.8 ± 3.7	11.7 ± 3.6
ER	2.3 ± 0.6	2.5 ± 0.5
Neutron	0.1 ± 0.1	0.1 ± 0.1
Total	$61.7_{-11.2}^{+14.4}$	95.8 ± 11.3

Set 3 with very high rate as template for MD

Use fixed-dt data as estimate for cathode!

Low-mass DM-e search

(A) $\mathrm{F}_{\mathrm{DM}}=1$

(B) $\mathrm{F}_{\mathrm{DM}} \sim 1 / \mathrm{q}^{2}$

- The most stringent constraints for the DM - electron interactions with mass in range of $40 \mathrm{MeV} / \mathrm{c}^{2}$ to 10 $\mathrm{GeV} / \mathrm{c}^{2}$ with $\mathrm{F}_{\mathrm{DM}}=1$, and $100 \mathrm{MeV} / \mathrm{c}^{2}$ to $10 \mathrm{GeV} / \mathrm{c}^{2}$ with $\mathrm{F}_{\mathrm{DM}} \sim 1 / \mathrm{q}^{2}$
- Our results challenge the freeze-out mechanism for DM mass range from 0.04 to $0.25 \mathrm{GeV} / \mathrm{c}^{2}$ with $\mathrm{F}_{\mathrm{DM}}=1$, and are closing in on the freeze-in prediction with $\mathrm{F}_{\mathrm{DM}} \sim 1 / \mathrm{q}^{2}$, assuming such light DM provides the entire DM abundance.

Summary \& Prospect

> Most stringent constraint on solar neutrino flux using CEvNS channel was obtained, using S1-S2 paired data.
> We understand the bkg component of S2-only channel, mostly surface bkg from cathode and S2 pileup from micro-discharging;
> Using S2-only data, the most stringent constraint on low-mass DM through DM-e scattering is given;
> Analysis combining Run0 and newly taken Run1 is ongoing;
> Dedicated calibration on ultra-low energy region is planned.

Thanks for listening!

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Coherent effects of a weak neutral current

Daniel Z. Freedman ${ }^{\dagger}$
National Accelerator Laboratory, Batavia, Illinois 60510
stitute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

Scientific goals of detection:

$>$ New channel for cosmic neutrino detection;
$>$ Weak mixing angle under low momentum transfer;
Non-standard neutrino interaction;
$>$ Technique for remove nuclear safeguard;

$\frac{d \sigma}{d T}=\frac{G_{F}^{2}}{4 \pi} Q_{W}^{2} M\left(1-\frac{M T}{2 E_{\nu}^{2}}\right) F\left(Q^{2}\right)^{2}$.
$Q_{W}=N-\left(1-4 \sin ^{2} \theta_{W}\right) Z$

$$
Q_{W} \propto N \Longrightarrow \frac{d \sigma}{d T} \propto N^{2}
$$

Neutrino sources

Validation of bkg model

$>$ Use a (loose cut - final cut) sample as control for bkg validation;
> Good match between data / control data both in width and S 2 spectral shape

