

New results from BULLKID

Marco Vignati, on behalf of the BULLKID coll. Taup, Vienna, 31 August 2023

Dark Matter - direct search

What is the Dark Matter made of?

- primordial black holes?
- μeV/c² eV/c² axion-like waves?
- MeV/c² TeV/c² WIMP-like particles?

kg-scale solid-state phonon detectors (this talk)

Multi-ton liquid scintillators

BULLKID / Vignati - 2

Direct dark matter search below 1 GeV/c²

cross section $\sigma < 10^{-40} \text{ cm}^2$

large number of targets
O(1 kg)

Difficult with Low-T detectors

energy < 1 keV

Motivation for Low-T detectors

Kinetic Inductance Detectors

AC superconductivity

- Electrons bound into Cooper pairs (no dissipation)
- High quality factors (Q $\sim 10^4 10^6$)
- Inertia from the mass of pairs (kinetic inductance, L_k)

superconductor under AC field $\overrightarrow{E_{AC}}$

$$L_k = \frac{m_e}{2 e^2 n_{\text{pairs}}}$$

Kinetic Inductance Detector (KID)

- Superconductor at T < 200 mK (AI)
- LC resonator

Invented by J. Zmuidzinas and his group at Caltech in 2003 for astrophysical applications

The BULLKID phonon detector array

Phonon mediation

detect phonons created by nuclear recoils in a silicon dice

carving of dices in a thick silicon wafer

lithography of multiplexed KID array

4.5 mm deep grooves

- 6 mm pitch
- chemical etching

0.5 mm thick common disk:

- holds the structure
- hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

The BULLKID phonon detector array

Phonon mediation

detect phonons created by nuclear recoils in a silicon dice

carving of dices in a thick silicon wafer

lithography of multiplexed KID array

4.5 mm deep grooves

- 6 mm pitch
- chemical etching

0.5 mm thick common disk:

- holds the structure
- hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

√ 60 detectors in 1

Fully multiplexed (single readout line)

BULLKID: the team

Sapienza University & INFN Rome

- A. Ahmad, A. Cruciani, M. del Gallo Roccagiovine,
- D. Delicato, G. Del Castello, M. Giammei,
- D. Maiello, V. Pettinacci, M. Vignati;

University & INFN Ferrara

L. Bandiera, V. Guidi, A. Mazzolari, M. Romagnoni, M. Tamisari;

Institut Néel - CNRS

M. Calvo, D. Delicato, A. Monfardini;

funded by the INFN and by Sapienza U.

First results (Summer '22)

 10^6

Frequency scan of the KID array

Particle interaction in a dice

- +) 58/60 KIDs alive
- +) RMS@0 eV: 26 ± 7 eV
- –) Response not uniform

A. Cruciani, et al, Appl. Phys. Lett. 121, 213504 (2022)

Phonon leakage

- Phonons generated by interactions
 - 40% absorbed by the KID
 - the rest leaks in nearby voxels or decays below the KID aluminum gap

- Measured energy leakage relative to central voxel:
 - (14 ± 3) % in each "+" voxel
 - (5 ± 1) % in each "x" voxel

This effect reduces the phonon focusing on the KID but it can be exploited to reconstruct the interaction voxel

New: combined analysis of a 9-dice cluster

Measurement of the energy spectrum of the central voxel Use the 8 external voxels as "veto" exploiting the phonon leakage

Time [ms]

Background: result

Above ground lab, no shield, 39 live hours

D. Delicato et al, arXiv:2308.14399

The excess above trigger threshold is compatible with noise false positives.

Bullkid / Vignati - 11

Bullkid / Vignati - 11

Mass and threshold improvement

Mass and threshold improvement

Threshold (ongoing R&D):

- 1. Replace Al with Al-Ti-Al KIDs 5x inductance
- 2. Deeper carvings for higher phonon focussing

Mass and threshold improvement

Threshold (ongoing R&D):

- 1. Replace Al with Al-Ti-Al KIDs 5x inductance
- 2. Deeper carvings for higher phonon focussing

3D copper printing at LNGS
3 wafer holder prototype

Impact on Dark Matter search

Nuclear recoil detector with:

- √ 15 (4") or 30 (3") BULLKIDs (2000 voxels)
- √ 0.6 kg of silicon target

√ 200 ÷ 50 eV threshold (160 eV demonstrated)

Unique features for bkg. suppression:

- ✓ No inert material in detector volume
- √ fully active
- √ fiducialization

DM

BULLKID / Vignati - 13

Backup slides

Improvement of uniformity

First version of the array

- +) 58/60 KIDs alive
- Response not uniform

- +) All KIDs with Q ~ 10⁵ (optimal sensitivity)
- Some resonator lost during operations

Phonon leakage, selection

Phonon leakage, selection

Phonon leakage, selection

Study of the energy threshold

Energy threshold usually set at 5 noise σ

- Reduces the rate of of false triggers
- We choose 4σ for the trigger

Statistics of false triggers from reverse data stream (minus sign on samples)

Reverse trigger spectrum (30 mins live time)

From the spectrum of false positive reverse triggers surviving the cuts we set the analysis threshold to 6σ

Towards the experiment

MC Simulations

Design of the apparatus

Definition of required radiopurity

Apparatus

Cryostat outer shielding (PE, Pb, ...)
Inner shielding
Outer muon veto (scint. panels)?
Cryo-veto around the BULLKIDs?
(BGO + Light detector?)

Energy calibration

Not possible with fibers: neutron recoils (a là CRAB)? Cs or Co Compton?

Collaboration is forming and is open to contributions