Towards the first axion search results of ALPSII

Li-Wei Wei

Deutsche Elektronen-Synchrotron (DESY) Hamburg, Germany

XVIII International Conference on Topics in Astroparticle and Underground Physics 2023

Any Light Particle Search II

Any Light Particle Search III

Dual optical cavity, resonantly enhanced Light-Shining-through-a-Wall experiment

Any Light Particle Search II

Dual optical cavity, resonantly enhanced Light-Shining-through-a-Wall experiment

Search for axions / axion-like particles via their coupling to photons (g_{ayy})

Photon energy at 1064 nm wavelength $\sim 1.2 \text{ eV}$

ALPS II target sensitivity

ALPS II target sensitivity

ALPS II has discovery potential

ALPS II has discovery potential

ALPS II is one of the on-site axion search experiments at DESY Hamburg

KALININ

ALPS II is one of the on-site axion search experiments at DESY Hamburg

with collaboration partners from

Denmark, Germany, the UK and the US

Universität Hannover

HAMBURG

SAXONY

SLOVAKIA

DESY. | Towards the first axion search results of ALPS II | Li-Wei Wei | TAUP2023, University of Vienna | 28 Aug – 01 Sept 2023

DESY. | Towards the first axion search results of ALPS II | Li-Wei Wei | TAUP2023, University of Vienna | 28 Aug – 01 Sept 2023

DESY. | Towards the first axion search results of ALPS II | Li-Wei Wei | TAUP2023, University of Vienna | 28 Aug – 01 Sept 2023

DESY. | Towards the first axion search results of ALPS II | Li-Wei Wei | TAUP2023, University of Vienna | 28 Aug – 01 Sept 2023

DESY. | Towards the first axion search results of ALPS II | Li-Wei Wei | TAUP2023, University of Vienna | 28 Aug – 01 Sept 2023

DESY. | Towards the first axion search results of ALPS II | Li-Wei Wei | TAUP2023, University of Vienna | 28 Aug – 01 Sept 2023

2022 Sept

Installation of the experiment completed

Sensitivity boosters: the ABCDs of ALPS II

LASER

OPTICAL SINGLE-PHOTON CAVITIES DETECTOR **SINGLE-PHOTON**

Sensitivity boosters: the ABCDs of ALPS II

(A) 40 W laser at 1064 nm $\approx 2 \times 10^{20}$ photons per second

(A) 60 W laser (~ 40 W injected to the experiment)

Sensitivity boosters: the ABCDs of ALPS II

- (A) 40 W laser at 1064 nm $\approx 2 \times 10^{20}$ photons per second
- (B) Probability of $\gamma \leftrightarrow a$ conversion in a magnetic field

$$\text{Prob}(\gamma \leftrightarrow \text{a}) \approx 3 \times 10^{-17} \times \left(\frac{B \cdot L}{560 \text{ tesla} \cdot \text{meter}}\right)^2 \times \left(\frac{g_{a\gamma\gamma}}{2 \times 10^{-11} \text{ GeV}^{-1}}\right)^2$$

 $A \times B^2 \approx 1.8 \times 10^{-13}$ photon/s

≈ 1 photon every 150000 years

(B) ALPS II Superconducting Magnets

North-Left Cleanroom

(B) ALPS II Superconducting Magnets North-Right Cleanroom top view, before pressure screw cold mass pressure pressur prop prop Central Results of straightening April 9th 2018 Cleanroom 17.9 mm **BL 007** Before straightening Aperture=37.4 mm ō top view, after After straightening pressure screw 5.5 mm Aperture=49.8 mm 02 Position along the beam pipe pressure North-Left Cleanroom 1,000 8,000 9,000 10,000 2,000

(B) ALPS II Superconducting Magnets

Sensitivity boosters: the ABCDs of ALPS II

- (A) 40 W laser at 1064 nm $\approx 2 \times 10^{20}$ photons per second
- (B) Probability of $\gamma \leftrightarrow a$ conversion in a magnetic field

$$\text{Prob}(\gamma \leftrightarrow \text{a}) \approx 3 \times 10^{-17} \times \left(\frac{B \cdot L}{560 \text{ tesla} \cdot \text{meter}}\right)^2 \times \left(\frac{g_{a\gamma\gamma}}{2 \times 10^{-11} \text{ GeV}^{-1}}\right)^2$$

(C) Resonant gain of optical cavities, β

$$\beta \approx 10000 \times \left(\frac{100 \text{ ppm}}{\text{Mirror Transmissivity}}\right)$$
 for a lossless symmetric cavity

 $A \times B^2 \approx 1.8 \times 10^{-13}$ photon/s

≈ 1 photon every 150000 years

 $A \times B^2 \times C^2 \approx 1.8 \times 10^{-5}$ photon/s ≈ 1.6 photons per day

(C) ALPS II Regeneration Cavity

The axion-photon signal is resonantly enhanced with a cavity by the power build-up factor β

 $\beta \propto \frac{\text{Input Mirror Transmissivity}}{(\text{Cavity Roundtrip Loss})^2}$

(C) ALPS II Regeneration Cavity

Record-long storage time of a two-mirror optical cavity of > 7 millisecond

Detection of a 2-photon-per-day flux

Detection of a 2-photon-per-day flux

Heterodyne $\rightarrow v_1 \neq v_2$

Detection of a 2-photon-per-day flux

Heterodyne $\rightarrow v_1 \neq v_2$

Cavity resonance condition

$$2 \cdot L = N \cdot \lambda, \quad \nu = N \cdot \frac{c}{2L}$$

Free Spectral Range

1.22263 MHz

Detection of a 2-photon-per-day flux

Heterodyne $\rightarrow v_1 \neq v_2$

Cavity resonance condition

$$2 \cdot L = N \cdot \lambda, \quad \nu = N \cdot \frac{c}{2L}$$

Free Spectral Range

1.22263 MHz

Frequency requirements for heterodyne detection

Minimizing heterodyne dark count rate

- Electromagnetic Interference:
 - Middleman Laser at \mathbf{v}_3

Minimizing heterodyne dark count rate

- Electromagnetic Interference:
 - Middleman Laser at v_3
 - Double Demodulation

ALPS II optics setup for Initial Science Run

Production Cavity is absent -> 40 times more light on the COB, facilitates stray light hunting

ALPS II optics setup for Initial Science Run

- (A) 40 W laser at 1064 nm $\approx 2 \times 10^{20}$ photons per second
- (B) Probability of $\gamma \leftrightarrow a$ conversion in a magnetic field

$$\text{Prob}(\gamma \leftrightarrow \text{a}) \approx 3 \times 10^{-15} \times \left(\frac{B \cdot L}{560 \text{ tesla} \cdot \text{meter}}\right)^2 \times \left(\frac{g_{a\gamma\gamma}}{2 \times 10^{-10} \text{ GeV}^{-1}}\right)^2$$

(C) Resonant gain of Regeneration Cavity, β_{RC}

 $\beta_{\rm RC} \approx 5000$ for optimal SNR on the heterodyne detector

$$A \times B^2 \approx 2 \times 10^{-9}$$
 photon/s
 \approx 1 photon every 15 years

 $A \times B^2 \times C^1 \approx 2 \times 10^{-5}$ photon/s ≈ 0.8 photon per day

Production Cavity is absent \rightarrow 40 times more light on the COB, facilitates stray light hunting

ALPS II science run

- Laser power $2 \times 10^{20} \, \gamma/_{S}$
- Trans./refl. of optics
- Detector sensitivity
- Cavity gain

$$\text{Prob}(\gamma \leftrightarrow \text{a}) \approx 3 \times 10^{-15} \times \left(\frac{B \cdot L}{560 \text{ tesla} \cdot \text{meter}}\right)^2 \times \left(\frac{g_{a\gamma\gamma}}{2 \times 10^{-10} \text{ GeV}^{-1}}\right)^2$$

Initial Science Run, first measurements

Initial Science Run sensitivity reach

Next steps

Automation

Background Reduction / De-phasing

2024

Initial Science Run

- 1 million second stretches of data
- Improved calibration
- Scalar / pseudo-scalar searches

$$g_{a\gamma\gamma} \phi \left(\vec{B}^2 - \vec{E}^2 \right) \qquad -g_{a\gamma\gamma} \phi E \cdot B$$

$$-g_{avv} \phi E \cdot B$$

Upgraded Cavity Mirrors

Production Cavity

Initial Science Run Sensitivity and Outlook

