TOWARDS A GRYOGENIG GALIERATION OF A PIELEGTRIG HALOSGOPE

Motivation

Detecting the QCD axion could solve both the strong CP and the dark matter problem.

Detection mechanism:

But! the signal would be extremely weak.

Possible solution: Constructive interference and resonant emission using a dielectric haloscope in cryogenic temperatures

Single cycle calibration setup

Semi-automatic single-cycle in-situ calibration and operation setup maximizes stability and reproducibility

RF switch: A critical component

Internal length precision measurement at μ m level $\Delta \Phi_{mdn} = 0.46^{\circ} \Delta \Phi_{std} = 0.29^{\circ}$ = -213.09° $\Delta\Phi_{mdn} = 0.72^{\circ} \Delta\Phi_{std} = 0.34^{\circ}$ $\overline{\Phi} = -215.26^{\circ}$, $\Delta\Phi_{mdn} = 0.31^{\circ} \Delta\Phi_{std} = 0.34^{\circ}$ 500 $\Delta\Phi_{mdn}$ = -0.3° $\Delta\Phi_{std}$ = 0.38° $\overline{\Phi} = -217.75^{\circ}$, $\Delta\Phi_{mdn}$ = -1.2° $\Delta\Phi_{std}$ = 0.35° $\overline{\Phi} = -213.52^{\circ}$, $\Delta\Phi_{mdn} = 0.23^{\circ} \Delta\Phi_{std} = 0.17^{\circ}$ 100 Standards needed for 1-port calibration and → CB-100 on the Higher frequency accumulates different ports more phase > more precision

Cryogenic stability

Phase evolution in vacuum cryostat using LHe

Vacuum cryostat provides the stability needed for MADMAX, Unlike the dipstick cryostat

Conclusions

Single cycle calibration and operation setup for the MADMAX prototype is in principle possible.

Investigations ongoing on stability of the setup and reproducibility of the measurements

Goal: 1 order of magnitude increase in sensitivity for axion search at CERN in 2024

Juan P.A Maldonado s6juarci@uni-bonn.de

