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DArk Matter In CCDs collaboration


• Setup beneath 2 km of granite at SNOLAB (Canada)


• Sensors in cryogenic conditions ( )


Charge-Coupled Devices


• Very low noise and leakage current: sensitive to e-


• 3D track reconstruction and particle identification capabilities


DAMIC apparatus in 2018:


• Seven thick CCDs ⟹ massive target


• Sensitive to:


• WIMPs (nucleus coherent scattering)


• Hidden sector DM (e– interactions)

10−6 mbar, 140 K

                                                                                                      675 μm ∼ 40 g
a) Packaged DAMIC CCD


b) Copper CCD housing


c) In-vacuum setup


d) Pb and polyethylene outer 
shielding

DAMIC AT SNOLAB
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DAMIC

CCD 1

CCDs 2-7



CHARGE-COUPLED DEVICES

 CCDs as Dark Matter Detectors

The silicon bulk of the CCD is used as target to interact with dark matter candidates. From this interaction we expect 

charge carriers to form within the bulk and we collect and count the number of carriers in each pixel. It is a direct 

detection apparatus for dark matter.

Interaction with silicon produces free charge 

carries...

● drifted across fully-depleted region

● collected in 15 micron square pixels

● stored until a user-defined readout time 

after many hours

The method of read-out can be optimized to 

improve read-out noise at the cost of read-out time

 → very little loss of charge

 → exceptional position resolution

 → large exposures

Silicon band-gap: 1.2 eV  

mean energy for 1 e-h pair: 

3.8 eV

CCD pixel cross-sectional diagram 
7/21

pp
n-Type Silicon

p-Type buried channel

Credits: Olympus
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DAMIC science-grade CCDs


• PolySi gate, p-type buried channel structure


• Fully depleted at 40 V ( ∼ 10 kΩ ⋅ cm)

DAMIC

Portion of CCD image 
taken on surface



How we deal with backgrounds:


• Underground operation: cosmic radiation


• Material selection (assays): apparatus radioactivity


• In situ shielding: environmental radioactivity


• Discrimination and quantification of residual 
contaminants ⟹ radioactive background model


Background contributions:


•  in-CCD contaminants


•  OFHC copper


•  from various detector materials (lead, flex 
cables, etc.)

∼ 55 %

∼ 30 %

∼ 15 %

DAMIC BACKGROUNDS IN DAMIC

∼ 12 dru

1 dru = 1 event ⋅ (keV ⋅ kg ⋅ d)−1
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DAMIC

• Surface  from Rn deposition


• Bulk  from cosmogenic activation

210Pb

3H

• Bulk  in copper


• Cobalt isotopes from cosmogenic activation

210Pb



BACKGROUND TEMPLATE FITTING


Validation with CCD 1 data

Fit on CCD 2-7 data
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DAMIC

• Model constructed above 
 in the  space6 keVee (E, σxy)

 WIMP search below 
 in the  space

⟶
6 keVee (E, σxy)

Phys. Rev. D 105, 062003 JINST 16 P06019



≤200  EXCESS
eV

ε = 67 ± 37 eVee

17.1 ± 7.6 events

DAMIC

Systematic checks: no issue with analysis


Plausible interpretations:


• Unaccounted detector effect


• Missing background component 6
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Phys. Rev. Lett. 125, 241803



SKIPPER UPGRADE AT SNOLAB
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Almost twice as sensitive to previously detected excess

Expected rate increase in skipper upgrade 
Detected rate in DAMIC at SNOLAB 

Setup upgraded with two  skipper CCDs


• Same bkg contributions, same rate: 


•  lower noise with skipper readout: 


• Science run from March 2022 to Jan 2023


• Different readout  different noise response


• Improved  reconstruction for depth fiducialization


• after selections


6k × 4k

∼ 10 dru

10 × ∼ 0.16 e−

→

σxy(z)

4.8 kg-day total exposure. 3.1 kg-day 

DAMIC, DAMIC-M and SENSEI collaborations



LOW-ENERGY CLUSTERS
Likelihood clustering: find low-energy clusters by computing likelihood of ionization event inside moving window…

Image

Mask
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We expect a 2D Gaussian spatial 
distribution for ionization events. 

< 6 keV
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Fiducialized science data in ROI:  E < 500 eVee

Backside

Frontside — 


- - 

2σ

1σ

— 


- - 

2σ

1σ
                     σxy : cluster spread z : depth E : energy

: Noise + Ionizationγij =

Bulk fiducialization: we also reject CCD surface events, the largest source of systematic uncertainty

discriminates low-energy events from noise accidentals

DATA SELECTIONS

We apply a fiducial selection of bulk 


events, using the diffusion model:

 selection: efficiently reject noise accidentals down to ΔLL 23 eVee

Rejection efficiency 
validated with  ’s14C β

Rejection efficiency 
validated with  ’s14C β



FIDUCIALIZED SCIENCE DATA
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2σ surface rejection region 

Bulk search region of interest

threshold: 6 e− = 23 eVee

Bulk events energy projection

±1σ uncertainty on 
surface selections 

• Uniform spatial distribution


• Uniform amplifier distribution


• Uniform time distribution
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RESULTS
• Fit flat* bkg+exponential signal between 


The excess is still there.


• Increased significance:  (expected from lower threshold)


• Statistically compatible with old excess (see contours)


What is it?


• Thermal neutrons? No known source that could have this rate 
in our setup. Other sources of low-energy events?


• We cannot exclude the most exciting option… (BUT, some 
experiments have already excluded this region of parameter 

23 eVee and 6 keVee

5.4σ

arXiv:2306.01717
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The excess is still there.


• Increased significance:  (expected from lower threshold)
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What is it?


• Thermal neutrons? No known source that could have this rate 
in our setup. Other sources of low-energy events?


• We cannot exclude the most exciting option… (BUT, some 
experiments have already excluded this region of parameter 

23 eVee and 6 keVee

5.4σ
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*Flat background: conservative assumption. Low-
energy drops expected in ROI from Compton and 

tritium  events. Data consistent with background 
model above 0.5 keV

β−

RESULTS
arXiv:2306.01717
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• Fit flat* bkg+exponential signal between 


The excess is still there.


• Increased significance:  (expected from lower threshold)


• Statistically compatible with old excess (see contours)


What is it?


• Probably a source of radiation. Neutrons?                     
Required flux: total flux in 
SNOLAB cavern. We expect  lower.


23 eVee and 6 keVee

5.4σ 0.2 cm−2 day−1 ∼
∼ 100 ×

RESULTS
arXiv:2306.01717
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a)Spin-independent

b)Isospin-violating

c)Spin-dependent 
  (neutron only)
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EXCESS CONTOURS
Linear interpolation of excess contours

Points of combined 
p-value = 0.1

Each point  uniquely identifies 
a point in the  space

(R, ε)
(mχ, σχN)

Take-home message:


• Comparison between different materials should be taken with a 
grain of salt. Investigations with silicon detectors are now most 
important to understand the DAMIC excess

•   has nuclear spin .


•  (92% n.a.) has  too,          
 (5% n.a.) has 


➡ Spin-dependent dark matter 
interaction is possible (neutron-only)

40Ar J = 0
28Si J = 0
29Si J = 1/2

σχN ∼ [ fpZ + fn(A − Z)]2

• In general, no reason to assume 


➡ Isospin-violating dark matter

• Destructive interference can 

suppress cross section

fn = fp

• NRIE largest systematic: compare 
DAMIC and SCDMS measurements 

arXiv:2308.12176

arXiv:2303.02196



CONCLUSIONS

• DAMIC at SNOLAB pioneered CCDs as Dark Matter detectors: 


• Constructed first comprehensive CCD background model 


• Detected low-energy excess below 


• DAMIC-M will deploy a kg-scale skipper CCD detector in 2024


• Low-energy excess confirmed with DAMIC-M skippers at SNOLAB


• Sub-electron noise


• Different readout strategy


• Rejected most prominent source of systematic: surface events


• Unchanged background environment


• Will investigate excess in DAMIC-M (different) ultra-low background environment, much 
higher statistics and NR/ER discrimination 


• If confirmed, excess will have significant implications on the next generation of CCD dark matter 
experiments

500 eVee

arXiv:2306.01717
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See TAUP talks from R.Smida and P.Privitera on Aug 28th and 31st



Thanks!





ENERGY AND DEPTH RESPONSE
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Energy response validated with Compton 
scatterings from  down to  241Am 23 eVee
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DAMIC

Depth response validated with 
low-energy neutrons from SbBe

PRD106(2022)092001 J. Phys.: Conf. Ser. 1468 012024



19

Bulk acceptance

Ionization acceptance

threshold: 6 e− = 23 eVee

Valid clusters: from  


- discard bad images


- mask high-energy clusters


- mask defects, hot regions and 
instrumental artifacts

4.8 to 3.1 kg-day

DATA SELECTIONS



DIFFUSION SYSTEMATICS
Validation of surface rejection with  pure β source (Qβ = 156.476 keV)14C
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Validation of likelihood clustering selections: comparing data and noise simulations

ΔLL CUT SYSTEMATICS
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LOW-E CLUSTERS

Visual inspection event by event for quality assessment
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ΔLL CUT INGREDIENTS 
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MAIN BACKGROUNDS
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MAIN BACKGROUNDS: TRITIUM
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MAIN BACKGROUNDS: COMPTON
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BKG MODEL VALIDATION
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Validation of statistical properties of dataset

MAIN SYSTEMATICS
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BULK EVENTS SIMULATIONS
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EXCESS AS A BACKGROUND
Sensitivity projections for DM-  scattering:               
How the excess might affect DAMIC-M sensitivity.


• We extrapolate the exponential physical signal down to  
and simulate it as a background for hidden sector DM 
searches


• Conservative assumptions on noise and leakage current 
(  and ), and readout strategy 
(continuous)


• We consider two scenarios:


• The excess event rate is fixed to  and does not 
depend on the total background rate


• The excess event rate scales with the background rate


➡  order of magnitude reduction in DAMIC-M

e−

1e−

σ = 0.23 e− λ = 10−3 e−/pix/day

9.4 (kg-d)−1

2

Preliminary



DAMIC

Donor concentration profile on the backside causes partial charge collection 

fpcc(E[keVee]; αpcc) = Npcce
− E

αpcc

Incorporate it as systematic via back 
exponential in log-likelihood fit

BACKSIDE ANALYSIS: PARTIAL CHARGE COLLECTION 


largest uncertainty in our response model

DAMIC
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SYSTEMATIC CHECKS

Systematic Checks

• Fit above 200 eVee consistent with null hypothesis


• Fit to CCD1 and CCD2-7 data sets separately 
consistent with joint analysis (excess more significant 
in CCD 1)


• Partial Charge Collection (PCC) systematic cannot 
account for the excess 


• Front-surface events alone cannot account for the 
excess


• Local vs Global significance tests: excess is by far the 
most significant feature in data


• Serial register events excluded as possible source of 
excess (0.01% of overall exposure)

Backside PCC events

Bulk excess
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DAMIC



11 KG-DAY WIMP SEARCH LIMITS  
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Phys. Rev. Lett. 125, 241803
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DAMIC



POISSON-PLR LIMITS
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DAMIC



CHARGE-COUPLED DEVICES

 CCDs as Dark Matter Detectors

The silicon bulk of the CCD is used as target to interact with dark matter candidates. From this interaction we expect 

charge carriers to form within the bulk and we collect and count the number of carriers in each pixel. It is a direct 

detection apparatus for dark matter.

Interaction with silicon produces free charge 

carries...

● drifted across fully-depleted region

● collected in 15 micron square pixels

● stored until a user-defined readout time 

after many hours

The method of read-out can be optimized to 

improve read-out noise at the cost of read-out time

 → very little loss of charge

 → exceptional position resolution

 → large exposures

Silicon band-gap: 1.2 eV  

mean energy for 1 e-h pair: 

3.8 eV

CCD pixel cross-sectional diagram 
7/21

pp
n-Type Silicon

p-Type buried channel

Credits: Olympus
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DAMIC science-grade CCDs


• PolySi gate, p-type buried channel structure


• Fully depleted at 40 V ( ∼ 10 kΩ ⋅ cm)

DAMIC



CHARGE-COUPLED DEVICES
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Performance


• Charge transfer inefficiency 


• Readout noise 


• Leakage current 

< 10−6

< 2 e− (6 eV)

∼ 10−4 e−/pix/day

DAMIC

DM Motivation CCDs Particle detection Quenching DAMIC Near future Summary BACK UP

CCD: readout

1

2

3
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CHARGE-COUPLED DEVICES
DAMIC

σback > σfront
Image courtesy of Prof. Alvaro Chavarria

Cosmic muon

Diffusion-limited

𝛽 particle

~1
 c

m
Sample CCD image (~15 min exposure) portion in the surface lab.

Image courtesy of Prof. A. Chavarria 37

σback > σfront



Background model construction:


• Decay and tracking across detector geometry with GEANT4


• CCD response simulation


• Reconstruction to  analysis space


• Likelihood fit to data in WIMP-free region ( ) 
⟹ extrapolate in ROI ( )

(E, σxy)

6 − 20 keVee

0.05 − 6 keVee

BACKGROUND MODELING


ROI Fit

Phys. Rev. D 105, 062003
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DAMIC

Simulated backgrounds for CCDs 2-7 in energy and depth

 : electron-equivalent energieseVee

JINST 16 P06019



• Charge generation: 


•  Diffusion model calibrated on muon surface data


• Charge collection efficiency based on secondary ion mass 
spectrometry measurements (SIMS)


• Consistent with later calibration


• Pixelation and noise addition


        Reconstruction into (E,σ) distribution

⟨Eeh⟩ = 3.8 eVee

DETECTOR RESPONSE
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Phys. Rev. Applied 15, 064026

        Reconstruction into  distribution(E, σxy)

 j.nima.2021.165511

DAMIC

Largest source of systematic 
uncertainty in this analysis
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DAMIC AT MODANE (DAMIC-M)
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Experiment will be deployed at Modane 
Underground Laboratory (LSM), France.


Main novelties:


• kg-scale detector (  CCDs)


• Skipper readout: sub-electron resolution 


•  lower backgrounds: 


Status:


• LBC prototype detector up and running. First 
DAMIC-M science results published recently  


• Construction starting in 2024

∼ 200

∼ 0.1 e−

∼ 100 × 10 dru → 𝒪(0.1) dru

9 cm

Nucl.Instrum.Meth.A 958 (2020) 162933

DAMIC-M CCD module 
packaged at UW

4x 9-megapixel CCDs
Phys. Rev. Lett. 130, 171003


