Confirmation of the spectral excess in DAMIC at SNOLAB with Skipper CCDs

Michelangelo Traina, on behalf of the DAMIC(-M) collaborations CENPA, University of Washington, Seattle (US)

Outline:

- 1. DAMIC at SNOLAB
- 2. Background model
- 3. Low-energy excess

- 4. SNOLAB skipper upgrade
- 5. Science data and selections
- 6. Confirmation of the excess

DAMIC AT SNOLAB

DArk Matter In CCDs collaboration

- Setup beneath 2 km of granite at SNOLAB (Canada)
- Sensors in cryogenic conditions (10^{-6} mbar, 140 K)

Charge-Coupled Devices

- Very low noise and leakage current: sensitive to e-
- 3D track reconstruction and particle identification capabilities

DAMIC apparatus in 2018:

- Seven thick CCDs \Rightarrow massive target $\sim 40 \text{ g}$
- Sensitive to:
 - WIMPs (nucleus coherent scattering)
 - Hidden sector DM (e-interactions)

- a) Packaged DAMIC CCD
- b) Copper CCD housing
- c) In-vacuum setup
- d) Pb and polyethylene outer shielding

CHARGE-COUPLED DEVICES

DAMIC science-grade CCDs

- PolySi gate, p-type buried channel structure
- Fully depleted at 40 V (\sim 10 k Ω · cm)

BACKGROUNDS IN DAMIC

How we deal with backgrounds:

- Underground operation: cosmic radiation
- Material selection (assays): apparatus radioactivity
- In situ shielding: environmental radioactivity
- Discrimination and quantification of residual contaminants ⇒ radioactive background model

Background contributions:

- $\sim 55\,\%$ in-CCD contaminants Surface ²¹⁰Pb from Rn deposition Bulk ³H from cosmogenic activation
- $\sim 30\,\%$ OFHC copper.... Bulk ²¹⁰Pb in copper Cobalt isotopes from cosmogenic activation
- $\sim 15\,\%$ from various detector materials (lead, flex cables, etc.)

~ 12 dru

 $1 dru = 1 event \cdot (keV \cdot kg \cdot d)^{-1}$

 10^{-3}

BACKGROUND TEMPLATE FITTING

• Model constructed above 6 keV_{ee} in the (E, σ_{xy}) space

— WIMP search below 6 keV_{ee} in the (E, σ_{xy}) space

 10^{-4}

20

16

Energy (keV_{ee})

0.2

0.4

0.6

 σ_x (Pixels)

8.0

1.0

≤200 eV EXCESS

Phys. Rev. Lett. **125**, 241803

Systematic checks: no issue with analysis

Plausible interpretations:

- Unaccounted detector effect
- Missing background component

SKIPPER UPGRADE AT SNOLAB

Setup upgraded with two $6k \times 4k$ skipper CCDs

- Same bkg contributions, same rate: ~ 10 dru
- 10 × lower noise with skipper readout: $\sim 0.16 e^{-1}$
- Science run from March 2022 to Jan 2023
 - Different readout → different noise response
 - Improved $\sigma_{xy}(z)$ reconstruction for depth fiducialization
 - 4.8 kg-day total exposure. 3.1 kg-day after selections

Almost twice as sensitive to previously detected excess

Detected rate in DAMIC at SNOLAB - Expected rate increase in skipper upgrade -

LOW-ENERGY CLUSTERS

<u>**Likelihood clustering**</u>: find low-energy clusters by computing likelihood of ionization event inside moving window... < 6 keV

DATA SELECTIONS

 ΔLL selection: efficiently reject noise accidentals down to 23 eV_{ee}

$$\log \mathcal{L}(N, \vec{\mu}, \vec{\sigma}, \lambda, \sigma_r | \vec{q}) = \sum_{i} \sum_{j} \left(\sum_{k}^{\infty} \log \left(\frac{\gamma_{ij}^k \exp(-\gamma_{ij})}{k!} \frac{1}{\sqrt{2\pi\sigma_r^2}} \exp\left(\frac{-(q_{ij} - k)^2}{2\sigma_r^2} \right) \right) \right)$$

$$\gamma_{ij} = \lambda_i + N \int_{i-0.5}^{i+0.5} \int_{j-0.5}^{j+0.5} \text{Gaus}(x, y | \mu_x, \mu_y, \sigma_x, \sigma_y) dx dy : \textbf{Noise + Ionization}$$

 $\Delta LL = -\log\left(rac{ ilde{\mathcal{L}}_g}{\mathcal{L}_n}
ight)$ discriminates low-energy events from noise accidentals

Bulk fiducialization: we also reject CCD surface events, the largest source of systematic uncertainty

We apply a fiducial selection of bulk events, using the diffusion model:

$$\sigma_{xy}(z,E) = \sqrt{-A\ln(1-bz)}(\alpha+\beta E)$$
 σ_{xy} : cluster spread z : depth E : energy

FIDUCIALIZED SCIENCE DATA

- Uniform spatial distribution
- Uniform amplifier distribution
- Uniform time distribution

RESULTS

• Fit flat* bkg+exponential signal between 23 eV_{ee} and 6 keV_{ee}

The excess is still there. arXiv:2306.01717

- Increased significance: 5.4σ (expected from lower threshold)
- Statistically compatible with old excess (see contours)

RESULTS

• Fit flat* bkg+exponential signal between 23 eV_{ee} and 6 keV_{ee}

The excess is still there. arXiv:2306.01717

- Increased significance: 5.4σ (expected from lower threshold)
- Statistically compatible with old excess (see contours)

*Flat background: conservative assumption. Lowenergy drops expected in ROI from Compton and tritium β^- events. Data consistent with background model above 0.5 keV

RESULTS

- Fit flat* bkg+exponential signal between 23 eV_{ee} and 6 keV_{ee}
 - The excess is still there. arXiv:2306.01717
- Increased significance: 5.4σ (expected from lower threshold)
- Statistically compatible with old excess (see contours)

What is it?

• Probably a source of radiation. Neutrons? Required flux: $0.2 \text{ cm}^{-2} \text{day}^{-1} \sim \text{total flux in}$ SNOLAB cavern. We expect $\sim 100 \times \text{lower.}$

EXCESS CONTOURS

arXiv:2308.12176

• Comparison between different materials should be taken with a grain of salt. Investigations with silicon detectors are now most important to understand the DAMIC excess

• NRIE largest systematic: compare DAMIC and SCDMS measurements

arXiv:2303.02196

$$\sigma_{\chi N} \sim [f_p Z + f_n (A - Z)]^2$$

- In general, no reason to assume $f_n = f_p$
 - → Isospin-violating dark matter
 - Destructive interference can suppress cross section

- 40 Ar has nuclear spin J = 0.
- 28 Si (92% n.a.) has J = 0 too, 29 Si (5% n.a.) has J = 1/2
- → Spin-dependent dark matter interaction is possible (neutron-only)

CONCLUSIONS

- DAMIC at SNOLAB pioneered CCDs as Dark Matter detectors:
 - Constructed first comprehensive CCD background model
 - Detected low-energy excess below 500 eV $_{ee}$
- DAMIC-M will deploy a kg-scale skipper CCD detector in 2024
 - Low-energy excess confirmed with DAMIC-M skippers at SNOLAB arXiv:2306.01717
 - Sub-electron noise
 - Different readout strategy
 - Rejected most prominent source of systematic: surface events
 - Unchanged background environment
 - Will investigate excess in DAMIC-M (different) ultra-low background environment, much higher statistics and NR/ER discrimination See TAUP talks from R.Smida and P.Privitera on Aug 28th and 31st
 - If confirmed, excess will have significant implications on the next generation of CCD dark matter experiments

n CENPA

Center for Experimental Nuclear Physics and Astrophysics

UNIVERSITY of WASHINGTON

Rocio Vilar Cortabitarte

Michael

The DAMIC-M Collaboration

ENERGY AND DEPTH RESPONSE

Energy response validated with Compton scatterings from 241 Am down to $23~{\rm eV}_{ee}$

Depth response validated with low-energy neutrons from SbBe

J. Phys.: Conf. Ser. **1468** 012024

DATA SELECTIONS

Valid clusters: from 4.8 to 3.1 kg-day

- discard bad images
- mask high-energy clusters
- mask defects, hot regions and instrumental artifacts

DIFFUSION SYSTEMATICS

Validation of surface rejection with ^{14}C pure β source (Q $_{\beta}$ = 156.476 keV)

ALL CUT SYSTEMATICS

Validation of likelihood clustering selections: comparing data and noise simulations

(a) Cluster centerx comparison.

(b) Cluster charge comparison.

LOW-E CLUSTERS

Visual inspection event by event for quality assessment

ALL CUT INGREDIENTS

Figure 3.12: Components needed to compute the ΔLL cut values. (a) The accidental rate, $R_a(q,\lambda)$, of clusters (in counts / kg / day) as a function of the local λ value from the blank images. We simulated ~ 30 kg days of images. (b) The CDF, $\alpha(\Delta LL, \lambda|q)$, of the ΔLL distribution for q=7. (c) The distribution of λ values across all images. We convert the exposure to a probability distribution $P(\lambda)$. (d) Finally the ΔLL cut as a function of charge to allow < 0.01 accidental event / kg / day. The uncertainty in the shaded band comes from the uncertainty of the bin content in (a).

MAIN BACKGROUNDS

	Detector part	Chain	C_l	Best-fit activity	Rate (dru): CCDs 2-7		Rate (dru): CCD 1	
					1–6 keV _{ee}	6–20 keV _{ee}	1–6 keV _{ee}	6–20 keV _{ee}
1	CCD	²³⁸ U	0.897	\lesssim 9.86 μ Bq/kg	0.01	0.01	< 0.01	< 0.01
2	CCD	²²⁶ Ra	0.900	$\lesssim 4.79 \mu \text{Bq/kg}$	0.01	0.01	< 0.01	< 0.01
3	CCD	²³² Th	0.900	$\lesssim 6.56 \mu \text{Bq/kg}$	0.01	0.03	0.01	0.02
4	CCD	40 K	0.910	$\lesssim 0.42 \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
5	CCD	²² Na	1.066	$340 \pm 60 \mu \mathrm{Bq/kg}$	0.17	0.16	0.10	0.09
6	CCD	32Si	1.042	$150 \pm 30 \mu\mathrm{Bq/kg}$	0.19	0.17	0.15	0.13
7	CCD	^{3}H	1.131	$330 \pm 90 \mu\mathrm{Bq/kg}$	2.86	0.78	2.40	0.66
8	CCD (front surface)	²¹⁰ Pb	1.658	$69 \pm 12 \text{ nBq/cm}^2$	1.45	1.67	0.53	0.88
9	CCD (back surface)	²¹⁰ Pb	$< 10^{-4}$	$<0.1 \text{ nBq/cm}^2$	< 0.01	< 0.01	< 0.01	< 0.01
10	CCD (wafer surface)	²¹⁰ Pb	1.343	$56 \pm 8 \text{ nBq/cm}^2$	2.43	1.84	1.98	1.18
11	Copper Box	^{238}U	0.900	$\lesssim 110 \mu \text{Bq/kg}$	0.01	0.01	< 0.01	< 0.01
12	Copper Box	²²⁶ Ra	0.900	$\approx 120 \mu \text{Bq/kg}$	0.19	0.15	0.03	0.02
13	Copper Box	²¹⁰ Pb	0.380	$10 \pm 6 \text{ mBq/kg}$	0.33	0.20	0.02	0.01
14	Copper Box	²³² Th	0.900	\lesssim 36 μ Bq/kg	0.08	0.06	0.01	0.01
15	Copper Box	⁴⁰ K	0.900	$\approx 28 \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
16	Copper Box	Act.	1.015	$280 \pm 30 \mu\text{Bq/kg}$	0.63	0.49	0.10	0.08
17	Copper Modules	²³⁸ U	0.900	$\lesssim 110 \ \mu \text{Bq/kg}$	0.05	0.03	< 0.01	< 0.01
18	Copper Modules	²²⁶ Ra	0.900	$\approx 120 \mu \text{Bq/kg}$	0.21	0.17	< 0.01	< 0.01
19	Copper Modules	²¹⁰ Pb	0.557	$15 \pm 4 \text{ mBq/kg}$	1.18	0.71	< 0.01	< 0.01
20	Copper Modules	²³² Th	0.900	$\lesssim 36 \mu \text{Bq/kg}$	0.10	0.08	< 0.01	< 0.01
21	Copper Modules	⁴⁰ K	0.900	$\approx 28 \mu\text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
22	Copper Modules	Act.	1.006	$130 \pm 10 \mu\text{Bq/kg}$	0.30	0.23	0.01	0.01
23	Kapton Cable	²³⁸ U	1.016	$59 \pm 5 \text{ mBq/kg}$	0.51	0.30	0.23	0.11
24	Kapton Cable	²²⁶ Ra	1.362	$7 \pm 5 \text{ mBq/kg}$	0.24	0.18	0.05	0.03
25	Kapton Cable	²³² Th	1.010	$32 \pm 0.5 \text{ mBq/kg}$	0.17	0.13	0.04	0.02
26	Kapton Cable	⁴⁰ K	1.003	$29 \pm 2 \text{ mBq/kg}$	0.09	0.05	0.04	0.02
27	Kapton Cable	Act.	1.000	$140 \pm 10 \ \mu \text{Bq/kg}$	0.01	0.01	< 0.01	< 0.01
28	Ancient Lead	^{238}U	0.911	$\lesssim 21 \ \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
29	Ancient Lead	²²⁶ Ra	0.900	$\lesssim 230 \mu \text{Bq/kg}$	0.44	0.36	0.21	0.18
30	Ancient Lead	²¹⁰ Pb	1.000	~33 mBq/kg	0.04	0.03	0.24	0.18
31	Ancient Lead	²³² Th	1.000	$\sim 2.3 \ \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
32	Ancient Lead	40 K	0.916	$\lesssim 5.3 \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
33	Outer Lead	^{238}U	0.916	$\lesssim 12 \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
34	Outer Lead	²²⁶ Ra	0.909	$\lesssim 190 \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
35	Outer Lead	²¹⁰ Pb	1.000	$18 \pm 5 \text{ Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
36	Outer Lead	²³² Th	0.907	$\lesssim 4.2 \mu \mathrm{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
37	Outer Lead	40 K	0.906	$\lesssim 200 \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
38	Module Screws	^{238}U	1.000	$20 \pm 40 \text{ mBq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
39	Module Screws	²²⁶ Ra	0.900	$\lesssim 1.4 \text{ mBq/kg}$	0.01	0.01	< 0.01	< 0.01
40	Module Screws	²¹⁰ Pb	1.000	$27 \pm 8 \text{ mBq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
41	Modu le Screws	²³² Th	1.024	$2.4 \pm 1.6 \text{ mBq/kg}$	0.02	0.01	< 0.01	< 0.01
42	Module Screws	40 K	1.000	$28 \pm 15 \text{ mBq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
43	Module Screws	Act.	1.000	$89 \pm 9 \mu\text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
44	Copper Vessel	²³⁸ U	0.903	$\lesssim 110 \ \mu \text{Bq/kg}$	< 0.01	< 0.01	< 0.01	< 0.01
45	Copper Vessel	²²⁶ Ra	0.900	$\lesssim 120 \ \mu \text{Bq/kg}$	0.10	0.09	0.01	0.01
46	Copper Vessel	²¹⁰ Pb	0.731	$20 \pm 8 \text{ mBq/kg}$	0.06	0.03	< 0.01	< 0.01
47	Copper Vessel	²³² Th	0.900	\lesssim 36 μ Bq/kg	0.04	0.03	< 0.01	< 0.01

					Rate (dru): CCDs 2–7		Rate (dru): CCD 1	
	Detector part	Chain	C_l	Best-fit activity	1–6 keV _{ee}	6–20 keV _{ee}	1–6 keV _{ee}	6–20 keV _{ee}
48	Copper Vessel	40 K	0.901	\lesssim 28 μ Bq/kg	< 0.01	< 0.01	< 0.01	< 0.01
49	Copper Vessel	Act.	0.486	$400 \pm 440~\mu\mathrm{Bq/kg}$	0.33	0.27	0.05	0.04
	Total				12.28	8.29	6.22	3.70

MAIN BACKGROUNDS: TRITIUM

MAIN BACKGROUNDS: COMPTON

BKG MODEL VALIDATION

Figure 3.9: The bulk (after σ_y cuts) background rate above 0.5 keV_{ee} for a bulk exposure of ~ 3 kg days.

MAIN SYSTEMATICS

Validation of statistical properties of dataset

(a) Time distribution of events.

(b) Amplifier distribution.

(c) Position distribution.

(d) Number of possible time coincident events.

BULK EVENTS SIMULATIONS

EXCESS AS A BACKGROUND

Sensitivity projections for DM- e^- scattering: How the excess might affect DAMIC-M sensitivity.

- We extrapolate the exponential physical signal down to $1e^-$ and simulate it as a background for hidden sector DM searches
- Conservative assumptions on noise and leakage current $(\sigma=0.23~e^- \text{ and } \lambda=10^{-3}~e^-/\text{pix/day})$, and readout strategy (continuous)
- We consider two scenarios:
 - The excess event rate is fixed to 9.4 (kg-d)⁻¹ and does not depend on the total background rate
 - The excess event rate scales with the background rate
 - → 2 order of magnitude reduction in DAMIC-M

BACKSIDE ANALYSIS: PARTIAL CHARGE COLLECTION

²¹⁰Pb spectrum

largest uncertainty in our response model

Incorporate it as systematic via back exponential in log-likelihood fit

$$f_{pcc}(E[keV_{ee}]; \alpha_{pcc}) = N_{pcc}e^{-\frac{\sqrt{E}}{\alpha_{pcc}}}$$

SYSTEMATIC CHECKS

Systematic Checks

- Fit above 200 eV_{ee} consistent with null hypothesis
- Fit to CCD1 and CCD2-7 data sets separately consistent with joint analysis (excess more significant in CCD 1)
- Partial Charge Collection (PCC) systematic cannot account for the excess
- Front-surface events alone cannot account for the excess
- Local vs Global significance tests: excess is by far the most significant feature in data
- Serial register events excluded as possible source of excess (0.01% of overall exposure)

11 KG-DAY WIMP SEARCH LIMITS

POISSON-PLR LIMITS

CHARGE-COUPLED DEVICES

DAMIC science-grade CCDs

- PolySi gate, p-type buried channel structure
- Fully depleted at 40 V ($\sim 10 \text{ k}\Omega \cdot \text{cm}$)

CHARGE-COUPLED DEVICES

3x3 pixels CCD

Performance

- Charge transfer inefficiency $< 10^{-6}$
- Readout noise $< 2 e^-$ (6 eV)
- Leakage current $\sim 10^{-4} e^{-1}/\text{pix/day}$

BACKGROUND MODELING

Background model construction: Phys. Rev. D 105, 062003 JINST 16 P06019

- Decay and tracking across detector geometry with GEANT4
- CCD response simulation
- Reconstruction to (E, σ_{xy}) analysis space
- Likelihood fit to data in WIMP-free region $(6-20 \text{ keV}_{ee})$
- \Rightarrow extrapolate in ROI (0.05 6 keV_{ee}) eV_{ee} : electron-equivalent energies

DETECTOR RESPONSE

- Charge generation: $\langle E_{eh} \rangle = 3.8 \text{ eV}_{ee}$ j.nima.2021.165511
- Diffusion model calibrated on muon surface data

- Charge collection efficiency based on secondary ion mass spectrometry measurements (SIMS)
 - Consistent with later calibration

Phys. Rev. Applied 15, 064026

- Pixelation and noise addition
 - Reconstruction into (E, σ_{xy}) distribution

DAMIC AT MODANE (DAMIC-M)

Experiment will be deployed at Modane Underground Laboratory (LSM), France.

Main novelties:

- kg-scale detector (~ 200 CCDs)
- Skipper readout: sub-electron resolution $\sim 0.1~e^-$
- $\sim 100 \times lower backgrounds: 10 dru \rightarrow \mathcal{O}(0.1) dru$

Status:

• LBC prototype detector up and running. First DAMIC-M science results published recently

Phys. Rev. Lett. **130**, 171003

• Construction starting in 2024

Nucl.Instrum.Meth.A 958 (2020) 162933

DAMIC-M CCD module packaged at UW