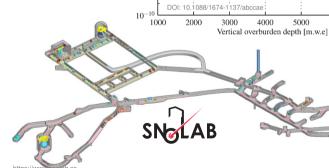


Background simulations for the SuperCDMS experiment -Efficient GEANT4 simulations using Importance Biasing

TAUP Conference, Vienna, Austria


Birgit Zatschler

on behalf of the SuperCDMS collaboration

28th August 2023

SNOLAB underground facility

- · Located in Sudbury, Canada, in an active mine.
- Rock overburden of 2 km shields from cosmic radiation.
- Muon flux reduced by a factor of 50 million compared to surface.
- · Hosting DM and neutrino experiments in need of low background environment.

10-

Fotal muon flux [cm⁻²s⁻¹

7000

Total muon flux

Fréius (France)

Jinping (China)

6000

Gran Sasso (Italy)

WIPP (USA

Sudbury (Canada)

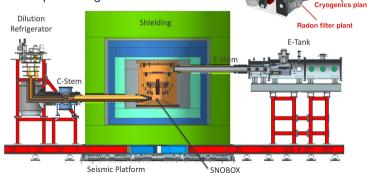
Boulby (UK)

Soudan (USA)

Kamioka (Japan)

5000

SuperCDMS experiment at SNOLAB

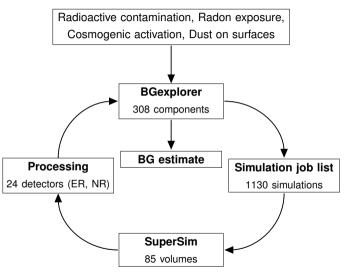

 The Super Croygenic Dark Matter Search experiment is aiming for direct detection of DM interactions.

 Complementary technique using 18 Ge and 6 Si detectors under cryogenic conditions.

• Commissioning planned for 2024.

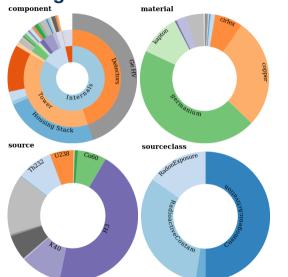
More SuperCDMS details in Stefan's preceding talk.

CUTE



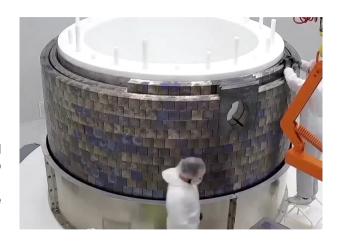
SuperCDMS

Clean room


Background simulation campaign for SuperCDMS

- Screen each component to get assays of contained radioactive isotopes.
- Monitor component's time on Earth's surface, exposure time to mine air, time in clean room accumulating dust.
- BGexplorer calculates the emission rate for each component and isotope.
- SuperCDMS' GEANT4 application SuperSim propagates emitted particles through setup and records detector hits.
- BGexplorer calculates component's BG contribution from processed spectra.

Background estimate from BGexplorer

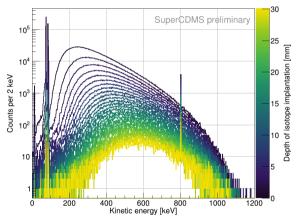

https://github.com/bloer/bgexplorer

- BGexplorer provides a background estimate based on material assay results.
- Visualizes the BG contribution in pie charts, spectra and tables.
- Enables easy identification of dominating BGs.

Birgit Zatschler

SuperCDMS lead shield simulation in SuperSim

- · Graded lead shield:
 - ► Ultra low background (ULB):
 - 0 1 cm 0.3 Bg/kg
 - ► Low background (LB):
 - 1 10 cm 21 Bg/kg
 - ► Regular background (RB): 10 - 20 cm - 157 Bg/kg
- Simulating ²¹⁰Pb in lead shield would consume about 1900 cpu years to achieve sufficient statistics.
 - Simulation procedure needs to be more efficient.



Simulation of ²¹⁰Pb in lead

- Investigated whether it is sufficient to only simulate ²¹⁰Pb in the inner 1 cm of lead.
- Simulated ²¹⁰Pb in various depths from the inner surface of the lead shield and recorded particles leaving it.

²¹⁰Pb in lead - simulated events

Simulation of ²¹⁰Pb in lead

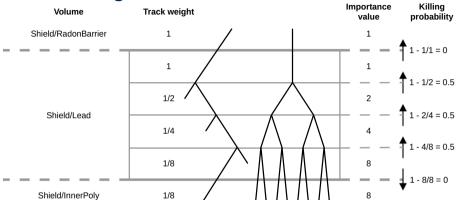
- Investigated whether it is sufficient to only simulate ²¹⁰Pb in the inner 1 cm of lead.
- Simulated ²¹⁰Pb in various depths from the inner surface of the lead shield and recorded particles leaving it.
- Weighting the spectra with specific activity and mass of the corresponding lead layer shows that the contribution from depths
 1 cm is important.
 - ► Need a way to propagate particles from the outer lead layers more efficiently.

²¹⁰Pb in lead - simulated events weighted with activity SuperCDMS preliminary 101

600

Kinetic energy [keV]

800



200

400

1000

Importance Biasing

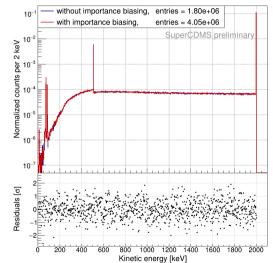
- GEANT4's importance biasing splits (kills) particles going to (away from) the detectors.
- The split particle is an identical copy of the original particle, both their weights are halved.
- A backwards going particle is either killed or its weight is adjusted.
- Only one particle type is biased, i.e. in our case gammas inside the lead shield.

Event Numbering – Biasing Index

Importance value	Track weight	Biasing Index	Biasing Index
1	1	0	
1	1	0	0
2	1/2	+1	0 1
4	1/4	+2	0 2 1 3
8	1/8	+4	0 4 2 6 1 5 3 7
8	1/8		

- Distinguish between different split-track topologies within a single generated event.
- The *Biasing Index* of a split particle is increased according to its track weight and the original particle's *Biasing Index*.

Event Numbering – Biasing Index

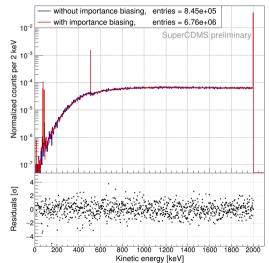

Importance value	Track weight	Biasing Index	Biasing Index	Biasing Index	
1	1	0			
1	1	0	0	0	
2	1/2	+1	0 1	0 1	
4	1/4	+2	0 2 1 3	0 2 1 3	
8	1/8	+4	$0\sqrt{4}$ $2\sqrt{6}$ $1\sqrt{5}$ $3\sqrt{7}$	0 4 1 5 3 7	
8	1/8				

- Distinguish between different split-track topologies within a single generated event.
- The *Biasing Index* of a split particle is increased according to its track weight and the original particle's *Biasing Index*.
- Sum up detector hits for same *Biasing Index* and weight with track weight.

Validation of Importance Biasing and Biasing Index

Simulating 2 MeV gammas inside 4 cm of lead

2 MeV gammas emitted inside the lead shield


- Lead shield thickness shrunk to 4 cm to achieve sufficient statistics without Importance Biasing.
- Record all particle tracks leaving the lead shield.
- Biasing simulation run with 4 importance layers of 1 cm thickness each.

Birgit Zatschler

Validation of Importance Biasing and Biasing Index

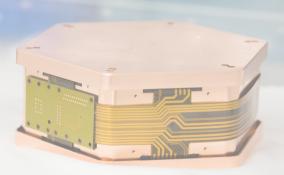
Simulating 2 MeV gammas passing through 4 cm of lead

2 MeV gammas started outside of the lead shield

- Lead shield thickness shrunk to 4 cm to achieve sufficient statistics without Importance Biasing.
- Record all particle tracks leaving the lead shield.
- Biasing simulation run with 4 importance layers of 1 cm thickness each.

Efficiency of Importance Biasing

- Count events leaving the lead shield per runtime with and without Importance Biasing.
- Efficiency improvement strongly depends on number and thickness of importance layers.


Lead shield thickness [cm]	Number of Imp. Layers	Events per runtime [1/ Imp. Bias. no Imp. Bi		Efficiency gain
5.00	4	531.5	108.4	4.9
6.25	5	506.1	62.7	8.1
7.50	6	485.0	35.7	13.6
8.75	7	462.3	20.2	22.9
10.00	8	444.1	11.6	38.4

- Importance layer thickness needs to be adjusted depending on the gamma energy.
- Very tricky choice for isotopes emitting different gamma energies, especially in decay chains.
- SuperCDMS' backgrounds include e.g. 210 Pb emitting a 46 keV γ and 232 Th with a 2.6 MeV γ .
- Studies ongoing to determine optimal importance biasing settings for effective simulations.

Summary & Outlook

- SuperCDMS has a strong background assay program.
- Sufficient statistics are necessary to model the background with simulations.
- Importance biasing improves the simulation efficiency significantly.
- Choice of importance biasing settings depends on multiple parameters.

SuperCDMS Collaboration

Flag icons from flaticon.com

https://supercdms.slac.stanford.edu

Backup

SuperCDMS' assay types

Radioactive Contamination

- Long-lived radioactive isotopes are contained in traces in all materials.
- Screen each component/material to get the specific activity of the contained radioactive isotopes.

Radon exposure

- Air above surface and underground contains traces of ²²²Rn, whose decays can implant ²¹⁰Pb into the surface of exposed materials.
- Need to know the radon level and exposure time to mine air to estimate the decay rate.

Cosmogenic Activation

- Neutrons originating from cosmic showers can activate materials residing on Earth's surface.
- Monitor component's time on Earth's surface and cooldown time until the experiment starts.

Dust on surfaces

- Dust can accumulate on surfaces and can contain radioactive contaminants.
- Need to know the type and concentration of radioactive contaminants, accumulation rate and mass of the dust.

