

Krypton Removal for the XENON Dark Matter Project

Johanna Jakob¹, Lutz Althüser¹, Christian Huhmann¹, David Koke¹, Andria Michael¹, Michael Murra^{2,1}, Philipp Schulte¹, Henning Schulze Eißing¹ and Christian Weinheimer¹ on behalf of the XENON collaboration

173 keV (β)

1.015µs

E = 514 keV (IT)

10.74y

99.6%

 $E = 687 \text{ keV } (\beta)$

¹Institut für Kernphysik, Universität Münster, Germany ²Columbia University, New York, USA

XENON dark matter project

- WIMP search via direct detection of recoils in liquid xenon (LXe)
- Dual-phase LXe time projection chamber (TPC) located at LNGS in Italy
- Currently: XENONnT with 5.9 t of active LXe mass and total xenon mass of 8.6t

- 494 PMTs monitor XENONnT TPC with diameter of 1.33 m and 1.49 m height
- Nuclear recoil (NR) and electronic recoil (ER) identified via ratio of light and charge signals
- Intrinsic background contributions from ²²²Rn, ⁸⁵Kr, radioactive xenon isotopes
- Low background: In Science Run 0 (15.8 ± 1.3) events/ $(t \cdot y \cdot keV)$ in ER rate reached below 30 keV recoil energy

85 Kr background

 natKr contains radioactive isotope 85Kr created by nuclear fission

Commercially available xenon:

• $^{\text{nat}}$ Kr/Xe ~ 10^{-6} to 10^{-9} (ppm to ppb)

• $85 \text{Kr/natKr} \sim 2 \cdot 10^{-11}$

• 85 Kr/Xe ~ $2 \cdot 10^{-17}$ to $2 \cdot 10^{-20}$

 85Kr as a noble gas is not removed by liquid and gas purification or rejected by fiducialization

 $1 \text{ ppm} = 10^{-6} \text{ mol / mol (parts per million)}$ 1 ppb = 10⁻⁹ mol / mol (parts per billion) 1 ppt = 10⁻¹² mol / mol (parts per trillion) 1 ppq = 10⁻¹⁵ mol / mol (parts per quadrillion)

Top condenser

Package material

Package tube

85Rh

ER background from 85Kr spectrum leaks into NR ROI for WIMP search → Without removal: 85Kr dominating ER background contribution

 XENONnT sensitivity requires target concentration of 0.1 ppt natKr/Xe or 1.1 events/ $(t \cdot y \cdot \text{keV})$ at low ER energies

Cryogenic distillation

- Uses the difference in vapor pressure of Kr $(P_{\rm Kr} = 20.9 \, \rm bar) \, \rm and \, Xe \, (P_{\rm Xe} = 2.0 \, \rm bar) \, at$ LXe temperature ($\sim -98^{\circ}$ C)
- Raoult's law: Relative volatility (ratio of vapor pressures) $\alpha = \frac{P_{\rm Kr}}{P} = 10.4$ describes enhancement in gaseous phase
 - → Kr as the more volatile component is enriched in the gaseous phase above a LXe reservoir
- Series of distillation plates successively reduces level of Kr impurities
- Re-condenser: vapor is partially liquefied and fed back to the column (partial reflux or rectification)
- Krypton-enriched xenon extracted as offgas, purified xenon extracted at the bottom

Bottom product liquid-out

XENON Kr distillation column

- 5.5 m high distillation column located in the XENON service building
- Built for XENON1T, also sufficient Kr suppression for XENONnT and Darwin/XLZD
- Multiple distillation stages realized with structured package material
- Column capable of xenon purification of up to 6.5 kg/h or 18 slpm
- Due to partial reflux 1% of xenon input is lost as off-gas

- Krypton concentration of **<48ppq** reached
- Column operated via overpressure at inlet
- Input condenser: Liquefaction for liquid feed and additional pre-separation stage
- Online mode: continuous distillation of gaseous xenon volume of the detector

Liquid feed

valves

Input

Eur. Phys. J. C (2017) 77:275

Performance and applications

- Reached 360±60ppq natKr/Xe in XENON1T Science Run 0 by online distillation
- Argon online distillation demonstrated with an effective time constant of $\tau_{eff. Ar} = 1.7 d$
 - → Allows ³⁷Ar to be used as low energy calibration source
- XENONnT: offline distillation of new xenon, three weeks of online distillation of complete xenon inventory
 - → 56±36ppq ^{nat}Kr/Xe in XENONnT Science Run 0
- With online mode: krypton level negligible w.r.t. radon
- Next challenge: radon removal, 6 see radon column poster

Design goals

- Krypton concentration of 0.2 ppt natKr/Xe (for XENON1T)
- Feeding flow rate: 3kg/h = 8.3 slpm
- Separation factor of **10**⁴ to **10**⁵
- Xenon recovery of 99% • T=178K and p=2bar
- McCabe-Thiele approach used to estimate number of required distillation stages

Eur. Phys. J. C (2017) 77:275