

The SENSEI[†] Experiment: sub-GeV dark matter searches with skipper-CCD

A. M. Botti* for the SENSEI† collaboration **18th International Conference on Topics in Astroparticle** and Underground Physics, Vienna

August 31, 2023

Image: SENSEI sensor

^{*} Fermi National Accelerator Laboratory · abotti@fnal.gov

[†] Sub-Electron-Noise Skipper-CCD Experimental Instrument · https://sensei-skipper.github.io

- L. Barak, E. Etzion, Y. Korn, A. Orly, T. Volansky
- A. M. Botti, G. Cancelo, F. Chierchie, M. Crisler, A. Drlica-Wagner, J. Estrada, G. Fernandez Moroni, N. Saffold, M. Sofo Haro, L. Stefanazzi, K. Stifter, J. Tiffenberg, S. Uemura
- M. Cababie, D. Rodrigues, S. Perez
- P. Adari, R. Essig, A. Singal, Y. Wu
- A. Desai, T.-T. Yu
- I. Lawson, S. Luoma, S. Scorza
- I. M. Bloch
- S. Holland

HEISING-SIMONS

¹ Also Fermilab

² Also U. Chicago

³ Also CAB, CNEA-CONICET-IB

Sub-Electron-Noise Skipper-CCD Experimental Instrument

New generation Charge Coupled Devices (CCD)

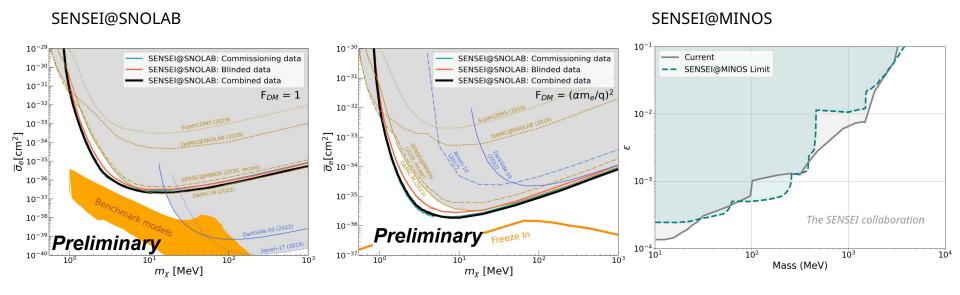
LBNL MicroSystems Lab Energy threshold ~ 1.1 eV

(Si bandgap) and readout noise ~ 0.1 e⁻

Main goals

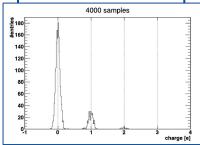
- · First DM detector with Skipper-CCDs
- · Validate technology for DM and v detection
- · Probe DM masses at the MeV scale (e recoil)
- Probe axion and hidden-photon
 DM masses > 1 eV (absorption)

Skipper-CCD for rare-event searches: number of contributions accepted @ TAUP


Skipper-CCD demonstrated @ FNAL									
Year	2017	2019	2021	2023					
Contributions	0	2	1	12					

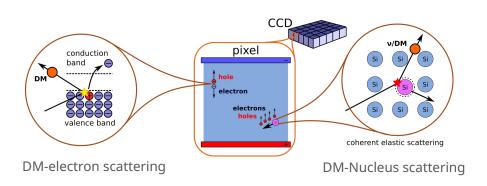
CONNIE OSCURA. **Packages Electronics** DAMIC-M. SENSEI. Aguilar-A Estrada et Chavez, et al. Botti, et al. Next talk This talk revalo et 8 Experiments / al. al. collaborations showing skipper-CCD data **Background** Outreach & **DarkNESS DMSQUARE** DAMIC Atucha / calibration Education Saffold et Avalos et al. Cababie Traina et al. Botti et al. Smida et al. et al. al.

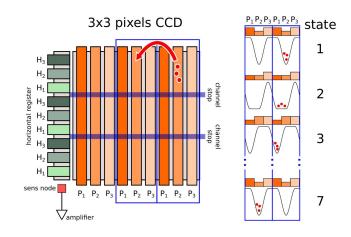
Latest results (2023)



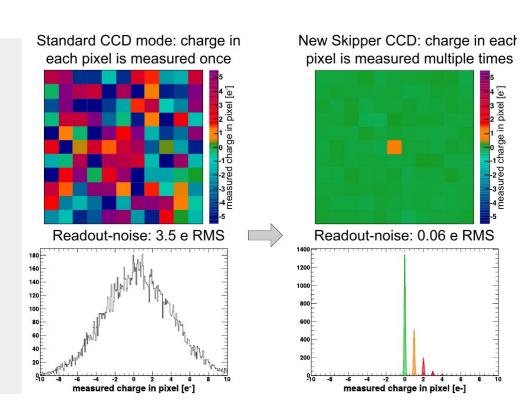
The Oensei Experiment

Ongoing 2017 2018 2019 2020 DM search with DM search with DM search with Production (100q) + Demonstrate sub-electron proto-SENSEI proto-SENSEI at science grade commissioning at resolution (0.1 g) at surface (~2 q) at **MINOS SNOLAB** (6000 m.w.e.) MINOS (230 m.w.e.) 4000 samples




Tiffenberg, Javier, et al. Physical Review Letters 119.13 (2017): 131802.

Charge-coupled devices (CCD)



Skipper-CCD read-out noise

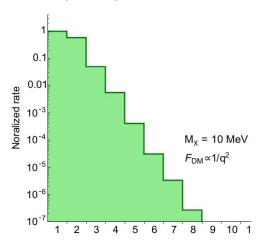
- 1. pedestal integration.
- 2. **signal** integration.
- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. Average all samples.

Then, both high- and low-frequency noise are reduced

Covered at DM plenary talks K. Schaeffner

Skipper-CCDs for dark matter

Light-**DM** mass range:


- . 1-1000 MeV for e⁻ recoil
- . 1~1000 eV for absorption
- 0.5~1000 MeV **Nucleus** recoil (Migdal effect)

Sensitivity to **1,2,3** e⁻ signals needed: **Skippers** can do this!

But only if we understand and control backgrounds...

Covered at DM plenary talks M. Cirelli

Expected spectrum from benchmark models (e⁻ recoil)

R. Essig et al, JHEP 05 (2016), 046

The Oensei Experiment

2017 2018 2019 DM search with Demonstrate DM search with sub-electron proto-SENSEI at proto-SENSEI resolution (0.1 g) at **surface MINOS** (230 m.w.e.) 1cm readout stages 200 um thick 0.1 gram mass

DM search with science grade (~2 g) at MINOS

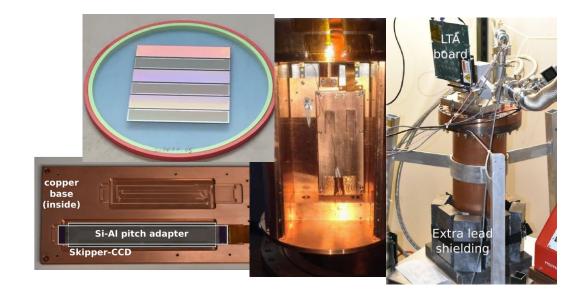
Production (100g) + commissioning at SNOLAB (6000 m.w.e.)

The SENSEI Collaboration Physical Review Letters 121.6 (2018): 061803.

The SENSEI Collaboration Physical review letters 122.16 (2019): 161801.

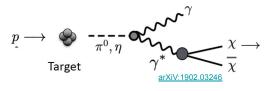
The Oensei Experiment

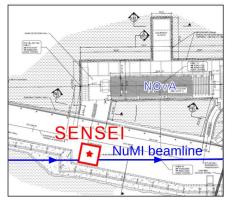
2017	2018	2019	2020	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)


The SENSEI Collaboration Phys. Rev. Lett. 125, 171802 (2020)

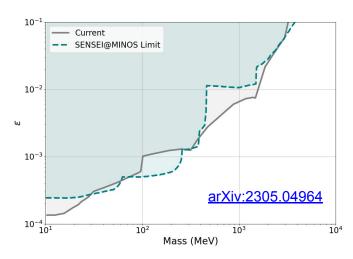
2020 New device @ MINOS

- First skipper-CCD optimized for DM detection
- 5.5 Mpix of 15 μm
- 675 µm thick
- Active mass ~ 2 g
- 20 kΩ
- 4 amplifiers
- T ~ 135 K + vacuum





2023: Milli-charged particles @ MINOS


Proton collisions w/ fixed target -> mCPs collinear w/ NuMI beamline:

Extension of previous analysis to 6e-

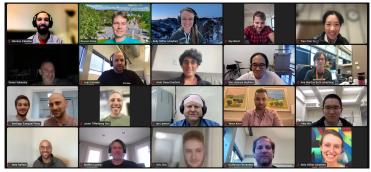
	$1e^-$	$2e^-$	$3e^-$	$4e^-$	$5e^-$	$6e^-$
Efficiency	0.069	0.105	0.325	0.327	0.331	0.338
Exp. [g-day]	1.38	2.09	9.03	9.10	9.23	9.39
Obs. Events	1311.7	5	0	0	0	0

2017	2018	2019	2020	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)

SENSEI @ SNOLAB

Towards a **100 g** science grade skipper-CCD detector:

- Produce ~ **50** devices
- Packaging at Fermilab
- Testing
- Deliver and deploy at **SNOLAB** (6000 m.w.e.)


Vessel deployed during the pandemic by SNOLAB staff

- → 10000 dru (MINOS standard shield): proto-SENSEI
- → 3000 dru (MINOS extra shield): first science grade skipper
- → 5 (ultimate goal) dru (SNOLAB): SENSEI 100 g

SENSEI @ SNOLAB: Setup

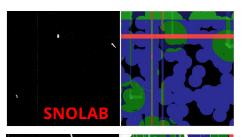
Setup:

- Copper box for 12 copper tray
- Each tray for 2 (4) ~2g CCDs.
- Cold copper box
- 6-in copper bricks and hat inner shield
- Vacuum pump (< 2x10^-4 mbar)
- Cryocooler + heater (~140 K)
- 2 layer of copper outer shield
- 3-in lead
- 42-inch polyethylene and water shield

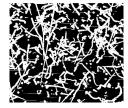
SENSEI @ SNOLAB: First science run

Setup:

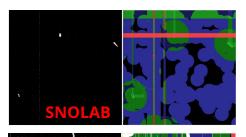
- 6 CCDs (~13 g),
- 6144 × 1024 pixels
- 15 µm pitch, 675 µm thick
- Installation: 4-7/2021
- Commissioning: 10/2021-8/2022
- Science: 9/2022-4/2023


Operations:

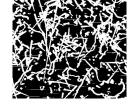
- 20 hour exposures
- 129 images (~50% blinded)
- 7.3 hours readout, noise of ~0.14 e-
- Temperature variations of 135 K-155 K
- 1 e- density (after cuts): ~2 x 10-4 e-/pixel



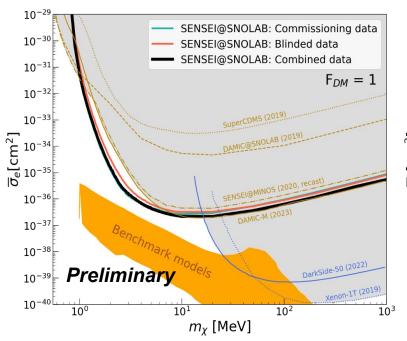
SENSEI @ SNOLAB: quality cuts

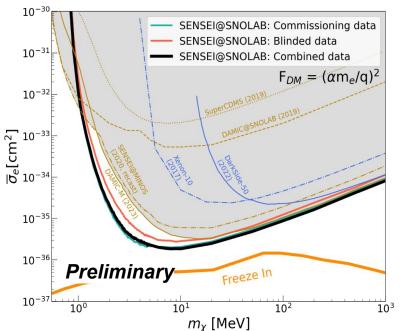

SURFACE (~20 less exposure)

- **1.** Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels ≥1 e-
- **3.** Apply masks to images to remove:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Serial register events
 - Charge transfer inefficiencies
 - Region surrounding any ≥1e- pixels
- **4.** Remove clusters with any pixels overlapping a mask
- **5.** Remove individual high-background cluster shapes



SENSEI @ SNOLAB: quality cuts


SURFACE (~20 less exposure)


- 45 unblinded commissioning images,
- 37 blinded images
- 2-10 e- channels
- Combined datasets: ~70 g-days per electron channel with cuts
- Three limits: blinded dataset, commissioning dataset, and combined commissioning + blinded exposure

SENSEI @ SNOLAB: First results

SENSEI @ SNOLAB: Second science run

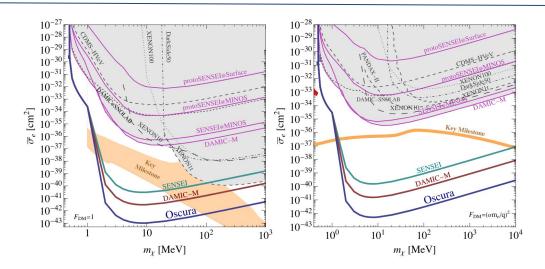
- 19 CCDs (~40 g)
- Improved support
- Shield fully deployed
- Data acquisition starting soon

Open data

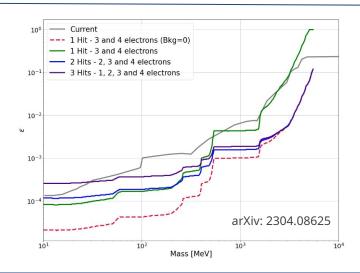
Data available in SENSEI papers:

- Physical Review Letters 121.6 (2018): 061803.
- Physical review letters 122.16 (2019): 161801.
- Phys. Rev. Lett. 125, 171802 (2020)
- arXiv:2305.04964
- SNOLAB paper in preparation

Contact us if anything else is needed


N_e Cuts	1			2	3		4	
1. Charge Diffusion	1.0		0.	228	0.761		0.778	
	Eff.	#Ev	Eff.	#Ev	Eff.	#Ev	Eff.	#Ev
2. Readout Noise	1	$> 10^5$	1	58547	1	327	1	155
3. Crosstalk	0.99	$> 10^5$		58004	0.99	314	0.99	153
4. Serial Register	~ 1	$> 10^5$	~ 1	57250	~ 1	201	~ 1	81
5. Low-E Cluster	0.94	42284	0.94	301	0.69	35	0.69	7
6. Edge	0.70	25585	0.90	70	0.93	8	0.93	2
7. Bleeding Zone	0.60	11317	0.79	36	0.87	7	0.87	2
8. Bad Pixel/Col.	0.98	10711	0.98	24	0.98	2	0.98	0
9. Halo	0.18	1335	0.81	11	~ 1	2	~ 1	0
10. Loose Cluster	N	/A	0.89	5	0.84	0	0.84	0
11. Neighbor	~ 1	1329	~ 1	5	N		/A	
Total Efficiency	0.	069	0.105		0.341		0.349	
Eff. Efficiency	0.	069	0.105		0.325		0.327	
Eff. Exp. [g-day]	1	.38	2.09		9.03		9.10	
Observed Events	131	$1.7^{(*)}$		5		0		0
90%CL [g-day] ⁻¹	525	5.2(*)	4.449		0.255		0.253	

Perspectives DM with skippers


arXiv: 2304.04401

Perspectives mCP with skippers

From SENSEI to OSCURA

OSCURA is expanding SENSEI concept to scale from 100 g to 10 kg

SENSEI:

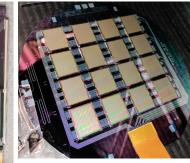
- 200 channels / 50 CCDs
- 1 Low-threshold acquisition board per 1 CCD

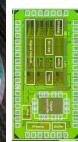
- 1 Silicon pitch adapter per 1
- CCD

+ **SENSEI expertise** on sensor design and fabrication, operations, testing, debugging, theory, processing and analysis software

OSCURA:

- 24000 channels / 24000 CCDs
- 1 Low-threshold acquisition board + ACDS and mux in **ASIC** per **4000 CCDs**


Current OSCURA electronics can read whole 125g with 1 channel and whole 2 kg with 1 board


• 1 Silicon pitch adapter per 16 CCDs

arxiv: 2210.16418 arxiv: 2304.13088 arxiv: 2108.09389

arxiv:2004.07599 PoS(444)1397

From SENSEI to OSCURA

OSCURA is expanding SENSEI concept to scale from 100 g to 10 kg

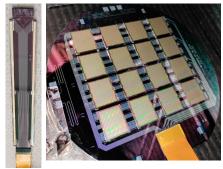
SENSEI:

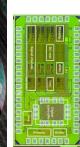
- 200 channels / 50 CCDs
- 1 Low-threshold acquisition board per 1 CCD

- 1 Silicon pitch adapter per 1 CCD

OSCURA:

- 24000 channels / 24000 CCDs
- 1 Low-threshold acquisition board + ACDS and mux in **ASIC** per **4000 CCDs**


Current OSCURA electronics can read whole 125g with 1 channel and whole 2 kg with 1 board


• 1 Silicon pitch adapter per 16 CCDs

+ **SENSEI expertise** on sensor design and fabrication, operations, testing, debugging, theory, processing and analysis software

arxiv: 2210.16418

arxiv:2004.07599 arxiv: 2304.13088 arxiv: 2108.09389 PoS(444)1397

Summary

- **SENSEI**: first dedicated experiment searching for **e-DM** interactions with skipper-CCDs.
- **protoSENSEI** at the **surface** and **MINOS** produced first physics.
- First **scientific grade skipper-CCD** achieved.
- New limit with MINOS data for mCP. Best constraints around 100 MeV
- Best constraints on DM-e- scattering for light mediator (1-1000 MeV) and heavy mediator (1-10 MeV)
- Absorption and Migdal limits coming

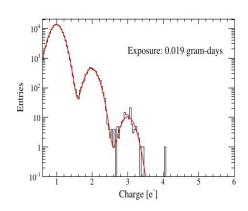
- Production of full 100 g detector fully funded
- 2nd science run at SNOLAB with 40 g starting soon
- generations of skipper-CCD experiments foreseen for cosmic DM searches in the next ~ 7 years
- New efforts to build particle trackers at beams for mCPs

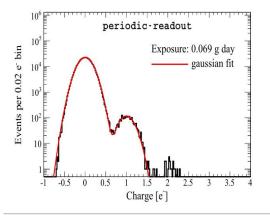
SENSEI @ SNOLAB: First results

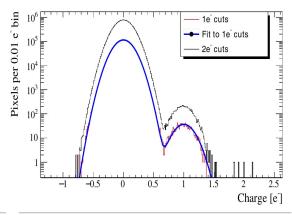
- 45 unblinded commissioning images,
- 37 blinded images
- 2-10 e- channels
- Combined datasets: ~70 g-days per electron channel with cuts
- Three limits: blinded dataset, commissioning dataset, and combined commissioning + blinded exposure

- Signal model: expected DM events per electron channel with QEdark, PhystatDM (arxiv:2105.00599f) and ionization model (arxiv:2004.10709)
- Split each electron channel into bins based on geometry
- Effective exposure with Monte Carlo given masks and charge diffusion
- Calculate expected coincidence background in each bin given measured 1e- density
- Limit: combined likelihood over all bins to set 90%
 C.L. upper limits

Quality cuts


N_e Cuts	1		2		3		4		
1. Charge Diffusion	12	1.0		0.228		0.761		0.778	
	Eff.	#Ev	Eff.	#Ev	Eff.	#Ev	Eff.	#Ev	
2. Readout Noise	1	$> 10^5$	1	58547	1	327	1	155	
3. Crosstalk	0.99	$> 10^5$		58004	0.99	314	0.99	153	
4. Serial Register	~ 1	$> 10^5$	~ 1	57250	~ 1	201	~ 1	81	
5. Low-E Cluster	0.94	42284	0.94	301	0.69	35	0.69	7	
6. Edge	0.70	25585	0.90	70	0.93	8	0.93	2	
7. Bleeding Zone	0.60	11317	0.79	36	0.87	7	0.87	2	
8. Bad Pixel/Col.	0.98	10711	0.98	24	0.98	2	0.98	0	
9. Halo	0.18	1335	0.81	11	~ 1	2	~ 1	0	
10. Loose Cluster	N	/A	0.89	5	0.84	0	0.84	0	
11. Neighbor	~ 1	1329	~ 1	5		N	/A		
Total Efficiency	0.	069	0.	105	0.3	341	0.3	349	
Eff. Efficiency	0.	069	0.	105	0.3	325	0.3	327	
Eff. Exp. [g-day]	1	.38	2	.09	9.	03	9.	10	
Observed Events	1311.7(*)		5		0		0		
$90\%\text{CL [g-day]}^{-1}$	525	$5.2^{(*)}$	4.	449	0.2	255	0.2	253	




Summary: from prototype to science grade

Active mass ~ 0.1 g 0.019 gram-day exposure 0.14 e- RO noise (800 samples) SEE ~ 1.14 e-/pixel/day

Active mass ~ 0.1 g 0.069 gram-day exposure 0.14 e- RO noise (800 samples) SEE ~ 0.005 e-/pix/day

Active mass ~ 2 g 19.926 gram-day exposure 0.14 e- RO noise (300 samples) SEE ~ 1.6x10⁻⁴ e-/pix/day



First Skipper-CCD prototypes

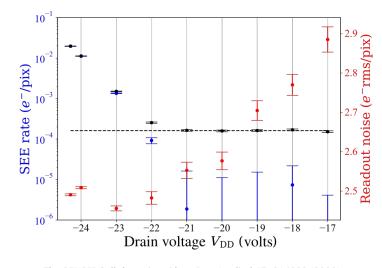
- Prototype designed at LBNL MSL
- 200 & 250 μm thick, 15 μm pixel size
- Two sizes 4k × 1k (0.5gr) & 1.2k × 0.7k pixels
- Parasitic run, optic coating and Si resistivity ~10kΩ
- 4 amplifiers per CCD, three different RO stage designs

Instrument:

- · System integration done at Fermilab
- · Custom cold electronics
- · Firmware and image processing software
- · Optimization of operation parameters

Background sources: detector

Exposure dependent


- · Dark current (10⁻⁵ e⁻/pix/day at 135 K)
- · Amplifier light (10⁻¹ to 10⁻⁵ e⁻/pix/day)

Exposure independent

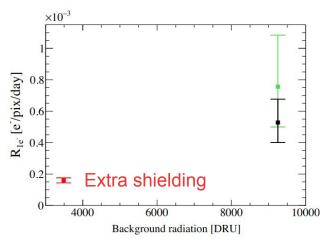
· Spurious charge (10⁻² to 10⁻⁵ e /pix/image)

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- Voltage configuration
- · Amplifier off while exposure

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

Background sources: environment

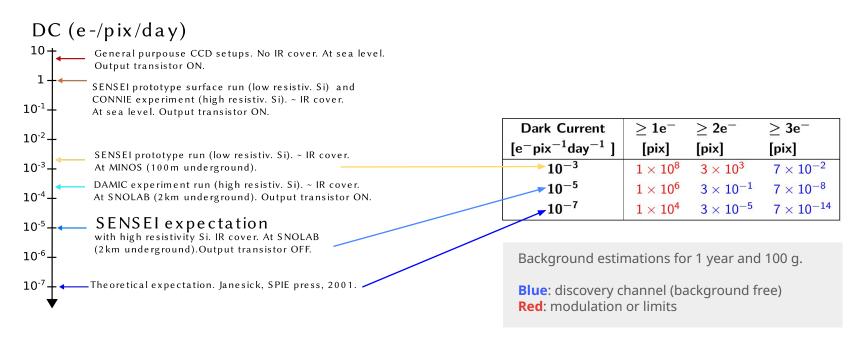

High-energy:

- · Air shower muons
- · Nuclear decays
- · x/γ-rays

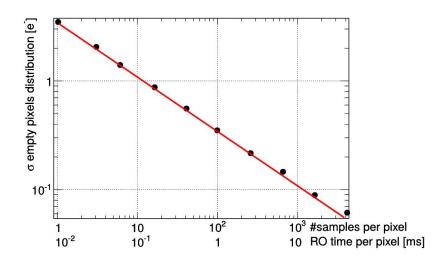
Low-energy:

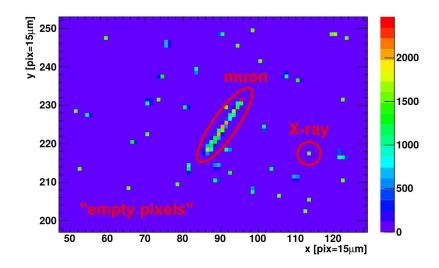
- · IR photons
- · Halo and transfer inefficiency
- · Compton scattering
- · Charge collection inefficiency

Environmental background is reduced with shielding, and removed from data with quality cuts

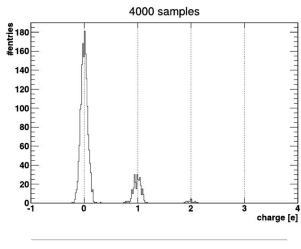


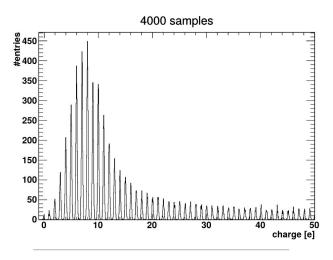
The SENSEI Collaboration - Phys. Rev. Lett. 125, 171802 (2020)


Background goal



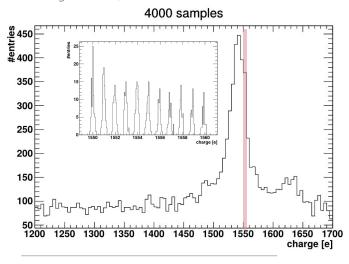
Skipper-CCD read-out noise

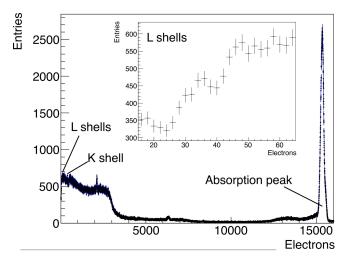




Skipper-CCD resolution

(Almost) Empty CCD


Front-illuminated CCD

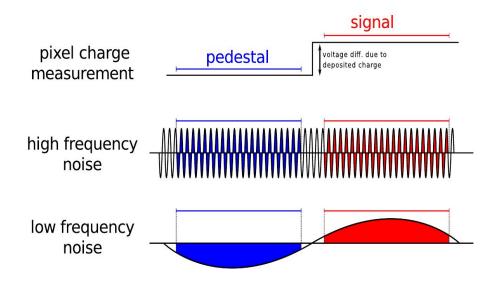


Skipper-CCD for photo detection

D. Rodrigues et al., NIMA A 1010 165511

Charge per event for 55Fe x-ray source

Compton scattering spectrum in Silicon with 241Am γ -ray source

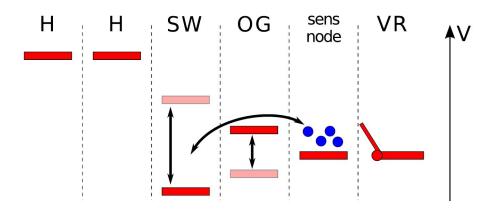


CCD read-out noise

Traditional **CCD**: **charge** transferred to sense node and read **once**

Pedestal and **signal** integration reduces **high-frequency** noise.

But not **low frequency**...

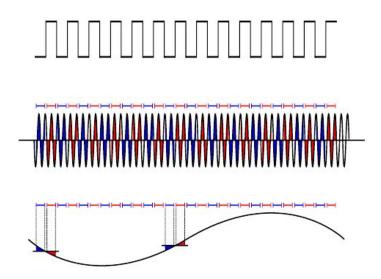


Skipper CCD read-out

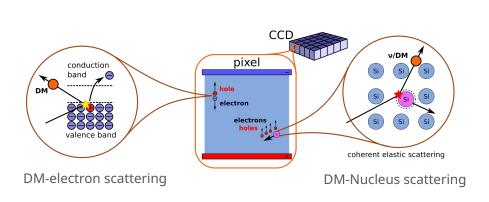
Multiple sampling of same pixel without corrupting the **charge** packet.

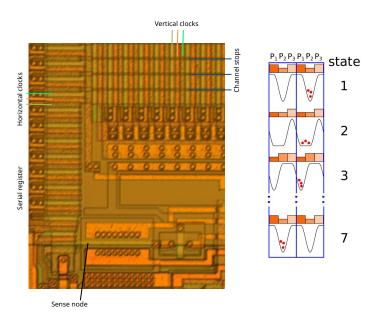
Pixel value = **average** of all samples

Suggested in **1990** by Janesick et al. (doi:10.1117/12.19452)

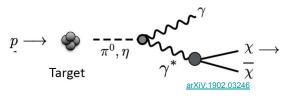


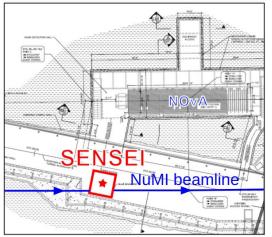
Skipper CCD read-out

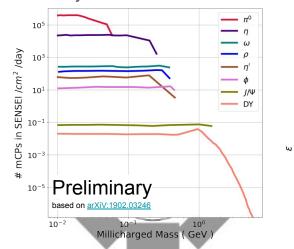

- 1. **pedestal** integration.
- 2. **signal** integration.
- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. Average all samples.


Then, the low-frequency noise is reduced

Charge-coupled devices (CCD)

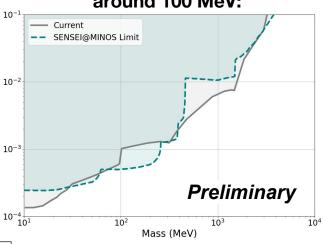






Proton collisions w/ fixed target can produce mCPs collinear w/ NuMI beamline:

Using production rates accepted by SENSEI@MINOS...



... and data from SENSEI@MINOS:

	$1e^-$	$2e^-$	$3e^-$	$4e^-$	$5e^-$	$6e^-$
Efficiency	0.069	0.105	0.325	0.327	0.331	0.338
Exp. [g-day]	1.38	2.09	9.03	9.10	9.23	9.39
Obs. Events	1311.7	5	0	0	0	0

Using same analysis as PRL 125.171802, but extending up to 6e⁻ (PRELIMINARY)

World-leading limits around 100 MeV:

Significant potential for future mCP searches with CCDs!