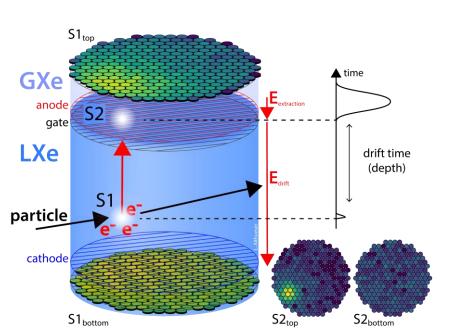
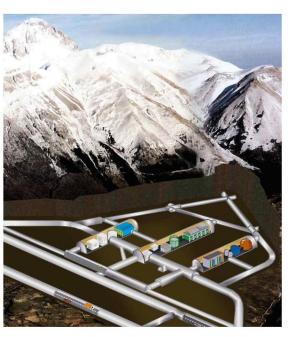


Radon Removal System for the experiment XENONnT and beyond




David Koke¹, Johanna Jakob¹, Lutz Althüser¹, Christian Huhmann¹, Andria Michael¹, Michael Murra^{2,1}, Philipp Schulte¹, Henning Schulze Eißing¹ and Christian Weinheimer¹ on behalf of the XENON collaboration ¹ Institut für Kernphysik, Universität Münster, Germany ² Columbia University, New York, USA

XENON

The XENONnT dark matter experiment

- Aimed at direct search for WIMP dark matter via nuclear recoils in xenon
- Located under 1500m of rock (3600 m.w.e) at LNGS, Italy
- Uses a LXe dual phase time projection chamber (TPC) filled with 5.9 t of xenon
- Full 3D position reconstruction using 494 PMTs (253 on top, 241 on bottom), z-position reconstructed via drift time between S1 and S2 Benefits of using xenon:
 - Heavy nucleus (A~131) high interaction with WIMPs (~A²)
 - High nuclear charge (Z=54) wery good self-shielding
 - Highly radiopure
- Projected WIMP sensitivity: 1.4·10⁻⁴⁸ cm² at 50 GeV

Nitrogen vessel

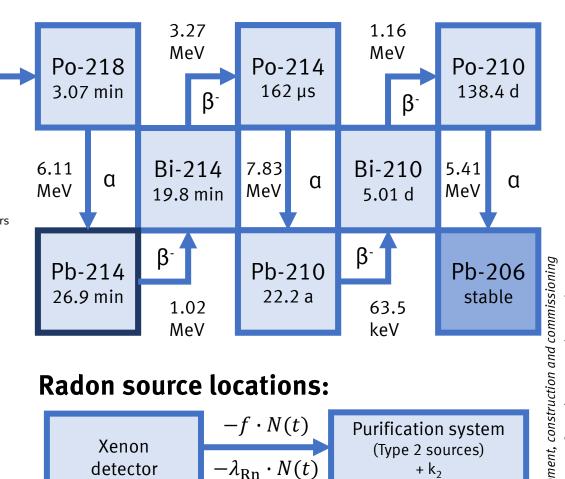
Copper plate

Intrinsic ²²²Rn background

Eur. Phys. J. C (2022)

5.59 a Continuously emanated from detector material getters, pumps, ...

Half-life of 3.82 d (long enough) for homogeneous distribution)


Decays to ²¹⁴Pb, β⁻-emitter & Feedthrough 1

(1.02 MeV) ---- ER background from ²²²Rn spectrum leaks into

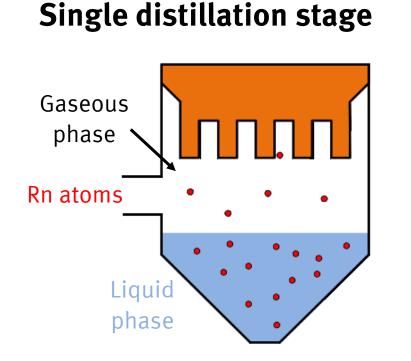
region of interest for WIMP search

As a noble gas, ²²²Rn can not be removed

- by getter and cannot be shielded. **Mitigation** by
 - Extensive material selection and cleaning • Improved **surface/volume ratio** of the detector
 - Continuous active removal via cryogenic distillation
- Without removal: $\approx 3.3 \,\mu\text{Bq/kg} = 3.3 \cdot 10^{-25}$
- Removal by continuous cryogenic online distillation required

TPC + cryogenics $k_2 + f \cdot N(t)$ (Type 1 sources) Radon Removal

Type-I Type-II Before removal Inside detector or


after removal system system Removal is flow Can be effectively dependent removed

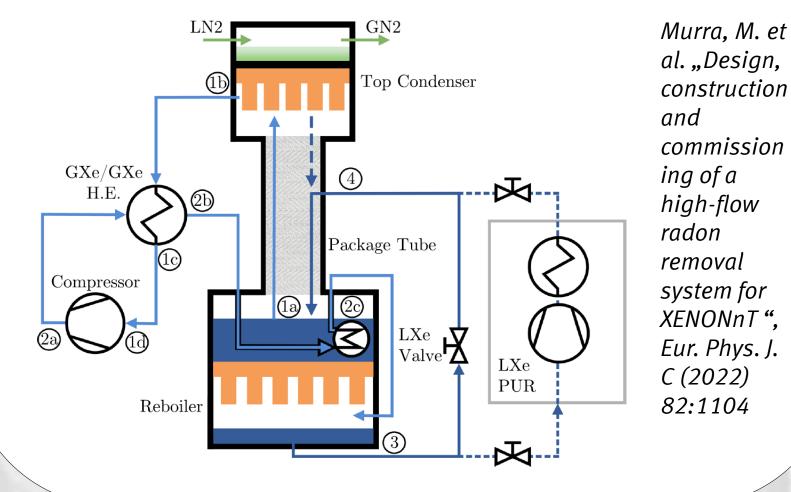
Cryogenic distillation


- Cryogenic distillation utilizes difference in vapor pressure between Rn and Xe
- Relative volatility $\alpha = \frac{P_{\rm Rn}}{P_{\rm Xe}} = 0.1$ at -98°C (LXe temperature)
- volatile component is enriched in the gaseous phase, while Rn is enriched in the liquid phase
- multistage distillation column Modified McCabe-Thiele

approach

- Top condenser: Vapor is partially liquefied and fed back to the column (partial reflux or
- rectification) Extract radon depleted xenon from the top
- Radon is trapped in LXe reservoir at the bottom ("reboiler") until decay $(T_{1/2} = 3.8 \text{ d}) \longrightarrow \text{no}$ extraction of contaminant
- enriched xenon —— no xenon loss

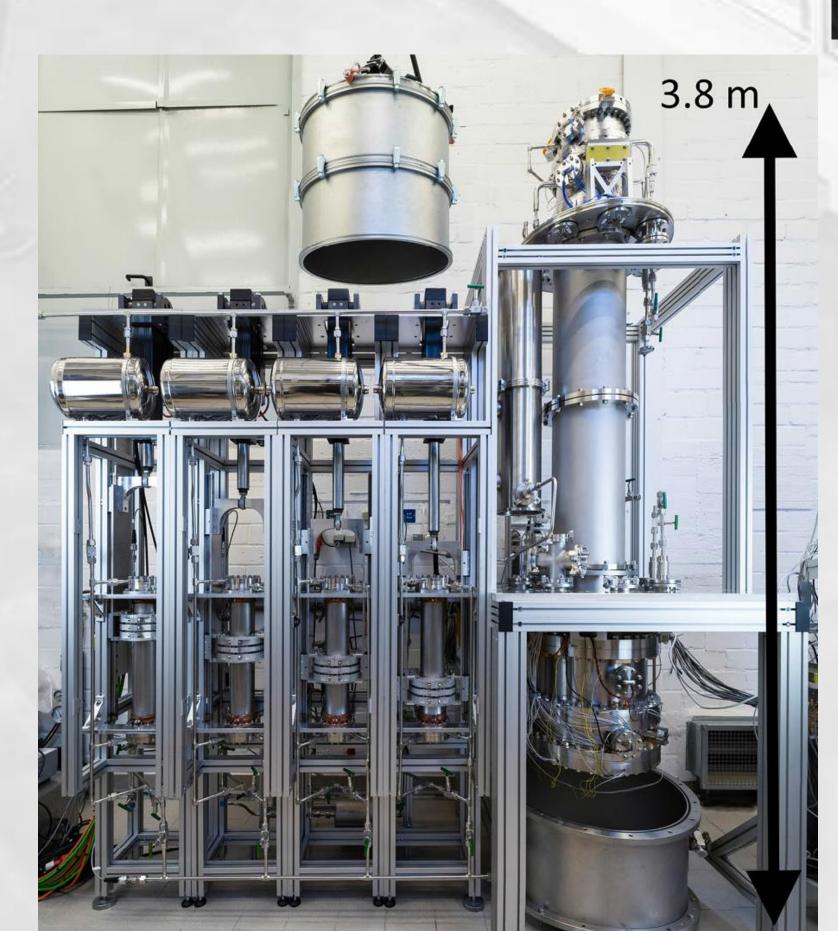
Multistage distillation column


Murra, M., PhD Thesis, "Intrinsic background reduction by cryogenic distillation for the XENON1T dark matter experiment "

Top condenser

Radon distillation column

- 3.8m high, located on 2nd floor of XENONnT service building
- Four main components:
 - Package tube: Structured packaging material = multiple theoretical stages. Large surface for liquid-gas exchanges Reboiler:
 - Top half traps ²²²Rn until it decays
 - Serves as Xe-Xe heat exchanger to evaporate xenon into package tube and to re-liquefy purified xenon in the bottom
 - **Top condenser:** Creates reflux with ratio 0.5 and provides
- 1 kW of cooling power via LN2 • **Compressor:** Four radon-free magnetically-coupled piston
- pumps re-liquefy GXe from top condenser Column can be run concurrently in two independent modes:
 - LXe mode: 200 slpm (1.7 tonnes/day) of xenon extracted from detector (after LXe PUR) ----- Rn reduction factor 2
 - **GXe mode**: Additional 25 slpm extracted from regions with high radon emanation (cables, feed lines, ...) ----- Rn reduction factor of 2 (close to 100% efficient in suppressing Rn emanated into gas phase)
- Depletion factor 100 at top, enrichment factor 1000 at bottom (with respect to the feed) \longrightarrow reduction factor $\mathcal{O}(10^5)$



al. "Design, construction commission ing of a high-flow radon removal system for XENONnT ", Eur. Phys. J. C (2022) 82:1104

Magnetically-coupled piston pumps

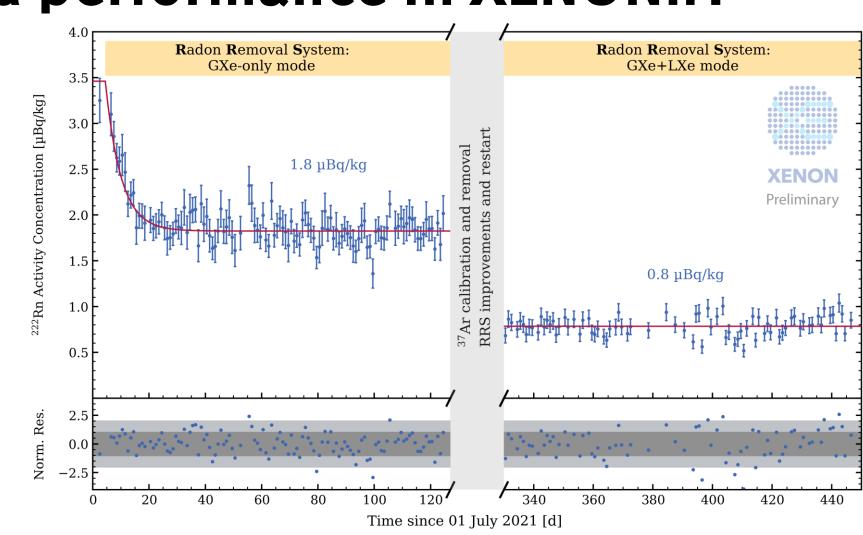
- Due to continuous Rn emanation, reduction depends on flow, provided by compressor, i.e., **the** four piston pumps Stainless steel cylinder Magnetically-coupled drive mechanism based on alternating magnet
- configuration Complete isolation of the drive from the gas Spring-steel flapper valves enable double stroke design, $\Delta P \approx 3$ bar Usage of clean and
- Brown, E. et al. "Magneticallycoupled piston pump for highpurity gas applications", Eur. Phys. J. C, vol. 78 (2018) 604
- radiopure components (222 Rn emanation of only 110±3 µBq)
- Two commercial heat exchangers used to warm up outgoing purified xenon and cool down returning compressed xenon ---- acts as part of a **heat pump**

Heat exchanger

Measured performance in XENONnT

• ²²²Rn concentration without distillation system: 3.3 µBq/kg

Bottom reboiler


- During SRO: **GXe**-mode only:
- $1.8 \mu Bq/kg$

Top reboiler

• During SR1: GXe+LXe mode:

 $0.8 \, \mu Bq/kg$

- Marks a new world record for any
- xenon dark matter experiment

Acknowledgements

