Heavy Dark Matter Search in XENON1T

Shengchao Li (li4006@purdue.edu) on behalf of the XENON collaboration PURDUE

XENON1T experiment and WIMP search

XENON1T use a dual phase time projection chamber (TPC) filled with 3.2 tonne of ultra-pure liquid xenon (LXe) located at INFN Laboratori Nazionali del Gran Sasso under 3600 m water-equivalent overburden.

Primary science goal:

Search for *single scattering* signal from Weakly Interacting Massive Particles (WIMPs)

Prompt and delayed pairing:

S1 (scintillation) + S2 (ionization)

3D position information and nuclear recoil (NR) vs. electronic recoil (ER) discrimination with S2/S1

XENON1T WIMP result excluded spin-independent elastic scatter cross-section of 4.1×10^{-47} cm² at 30 GeV/c^2 and 90% C.L.

Extend dark matter search to Planck mass

Motivation: search for dark matter with a high mass up to the Planck scale.

Theories: Mechanisms like non-standard thermal freezeout, thermal freeze-in, firstorder phase transitions, and decays of heavy fields can form dark matter with a mass beyond the unitary bound.

Direct Production: too heavy to be produced at LHC.

MIMP S2s $70 \mu s < \Delta t < 700 \mu s$ PE/ns Time [µs] 500 750 1500 Time [µs] $\rho_{\gamma} \approx 0.3 \text{ GeV/c}^2 \text{ cm}^{-3}$ Total flux limit (1/m² · TPC DM tracks **Multiple-scatters** dominate the high mass DM signal >10 NRs within ~1µs Less constraint from

Multiply Interacting Massive Particles (MIMPs):

- Multiple scattering NRs due to high cross-section (SI DM-nucleon $\sigma > 10^{-31}$ cm²)
- For a $m_{\nu} > 10^{12} \text{GeV}$:
 - Co-linear track
 - Negligible energy loss
 - A² enhancement from kinematic μ_A^2/μ_N^2
- Energy transfer is still small (i.e., $kr_A \ll 1$)
 - Mainly s-wave scatter

 - A² enhancement from coherence

MIMP Search in XENON1T

Backgrounds: BiPo decay chain, detector artifacts, muons (99.5% veto) MIMP signal: clustered S1s ($S1_m$) with a time scale around $1\mu s$.

- Signal acceptance from Monte Carlo simulation.
- Both spin-independent (SI) and spin-dependent (SD) interactions simulated.
- $/\mathrm{E}_{t_{\mathrm{t}}}$ SD-neutron SD-proton $\cos \phi$
- Overburden effect modeled for MIMPs traveling through the Earth before reaching the TPC.
- Energy loss is less than 0.1% for the parameters space considered.

New SI and SD limits near Planck mass

Time [μ s]

In the 188.7 m²×day of unblinded data, no MIMP candidates were found.

