

# Radon emanation suppression by surface coating

Hardy Simgen

Max-Planck-Institut für Kernphysik



# Radon background in low energy astroparticle physics experiments



- Radon (in particular <sup>222</sup>Rn) is serious source of background in many astroparticle physics experiments.
- Noble gas: Diffusion!
- Followed by chain of radioactive isotopes.
- Not only radon in environment (atmosphere), but also radon sources in detector (part of natural uranium/thorium decay chains).
- Recoil- and diffusion-driven radon emanation.
- Radon mitigation requires
  - Radon removaland
  - Radium removal (mother element).



August, 28th 2023

Radon background in XENONnT

3

All units [mBq]



- 222Rn is dominant background source in XENONnT.
- Various sources distributed over entire experimental infrastructure.
- <1 µBq/kg achieved (material selection and cleaning, online Xe distillation).</p>
- Future experiments require even stronger radon supression.

→ Novel radon mitigation techniques!





# Radon mitigation by surface coating



- Idea: A Rn-tight, clean (Ra-free) surface coating blocks Rn-emanation.
- Should work for recoil-driven (86 keV) AND diffusion-driven emanation.



| Method                                 | Coated<br>material | Company                         | <sup>220</sup> Rn reduction | <sup>222</sup> Rn reduction |
|----------------------------------------|--------------------|---------------------------------|-----------------------------|-----------------------------|
| Physical vapor deposition (sputtering) | Ti                 | Europcoating                    | 1 – 5                       | ~1                          |
| Chemical vapor deposition              | С-Н                | Innovative<br>Coating Solutions | ~3                          | ~1,5                        |
| Plasma<br>deposition                   | Си                 | Dr. Laure                       | 2 – 20                      |                             |

- Measurements with electrostatic detectors (220Rn) and proportional counters (222Rn).
- 4% thoriated welding rods: First simple metallic Rn-emanating sample.
- Little <sup>220</sup>Rn reduction and essentially no <sup>222</sup>Rn reduction observed.
- Best result for "hot" plasma depsoition, but re-evaporation due to hot substrate.

### Copper electro-deposition

- Motivated by experience with electro-formed copper (clean!).
- In-house development at MPIK: ~5 µm thick Cu layer.
- Good mechanical stability on tungsten.
- Efficient blocking of <sup>224</sup>Ra alpha-decay.
- 220Rn reduction factor of ~100 for thoriated tungsten rods observed!







From tungsten to stainless steel (SS): Recoil-implanted <sup>224</sup>Ra





- <sup>228</sup>Th source recoils <sup>224</sup>Ra into SS disc.
- $\rightarrow$  Short-lived (t<sub>H</sub>=3.7 days) <sup>220</sup>Rn-emanating SS sample.
- Easy to produce, relatively high activity.
- Re-consider plasma deposition with improved samples.



Procedure modification: Adhesion layer (~1 µm) for mechanical stability.

# Coating (and de-coating) of <sup>224</sup>Ra-implanted SS disc





- 224Ra decays on SS disc.
- 220Rn is emanated and measured through 212Po alpha-decays.
- Possible issue: Activity wash-off in electrolyte.
- Implantation → coating → de-coating
  - Upper limit from coating.
  - Lower limit from de-coating.
- Results for reduction factor R: 20 < R < 1000.

stainless steel





- <sup>226</sup>Ra-implanted stainless steel discs (2cm x 2cm).
- Produced at ISOLDE facility (CERN).
- 30 keV implantation energy.
- 2 test samples produced in 2017.
- 20 new samples approved (not only stainless steel), production in 2023.

- Sample characterization published in Appl. Rad. Isot. 194 (2023) 110666.
- Alpha measurement:
  - ► ~8.5 Bq <sup>226</sup>Ra activity.
  - Central deposition confirmed.
- Gamma measurement confirms alpha measurement.
- Direct <sup>222</sup>Rn emanation test with proportional counters:
  - $\blacksquare$  Sample a: (2.00 ± 0.05) Bq
  - $\blacksquare$  Sample b: (2.07 ± 0.05) Bq
- Wipe test: Less than 1% of activity removed.



| Measurement                 |   | Result (Bq)                                                |  |
|-----------------------------|---|------------------------------------------------------------|--|
| <sup>222</sup> Rn emanation | a | $2.07 \pm 0.03 \text{ (stat)} \pm 0.04 \text{ (syst)}$     |  |
| Kii eilialiation            | b | $2.00 \pm 0.03  (\text{stat}) \pm 0.04  (\text{syst})$     |  |
| γ-spectrometry              | a | $7.4 \pm 0.1 \text{ (stat)} \pm 0.9 \text{ (syst)}$        |  |
| y-spectrometry              | b | $8.4 \pm 0.3  (\text{stat}) \pm 1.0  (\text{syst})$        |  |
| $\alpha$ -spectrometry      | a | $8.7 \pm 0.1 \text{ (stat)} ^{+2.0}_{-1.8} \text{ (syst)}$ |  |
| a-spectrometry              | b | $9.1 \pm 0.1 \text{ (stat)} ^{+0.7}_{-0.4} \text{ (syst)}$ |  |

# Coating of the 1st ISOLDE sample



- Standard MPIK electro-chemical copperon-steel coating recipe applied.
- Unexpected large <sup>222</sup>Rn reduction factor!
- Increased over time from 450 to 1700: Copper layer re-arrangement?



# Secondary Electron Microscopy (SEM) investigation of our coating



- Rough surface texture with spherical structures.
- Unhomogeneous adhesive layer with small grain size and holes.
- Tight cover layer with larger grains.



# Summary and outlook



New electrode design for coating of cylindrical vessel

- Surface coating is a promising technology for radon mitigation.
- Electro-deposition of copper showed best reduction results.
- Future work focus on:
  - Coating characterization (SEM, X-ray, ...)
  - Purity of coating:
    - Cleanliness of electrolye (Deposition of impurities).
  - Up-scaling:
    - Development of new setup to coat ~15 liter vessel.
  - New ISOLDE samples will allow for more systematic studies.

13 Backup

# Radon removal by xenon distillation

14

- Radon is less volatile than xenon → reverse operation mode w.r.t. Kr removal.
- Feasibility demonstrated in Xenon100: EPJC (2017) 77:358
- Applied in XENON1T: 4.5 μBq/kg achieved: EPJC (2021)81:337
- High flow radon removal system developed for XENONnT:

arXiv: 2205.11492

1.7 µBq/kg achieved



- Upscaling only possible for high throughput system.
- Processing speed for DARWIN must be >=10 tons/day.
- Efficiency in power consumption and xenon holdup versus radon reduction is crucial.



H. Simgen, MPIK, TAUP 2023

August, 28th 2023

# Radon removal by xenon distillation

15

#### Rn-free Xe out

- Radon is less volatile than xenon → reverse operation mode w.r.t. Kr removal.
- ► Feasibility demonstrated in Xenon100: EPJC (2017) 77:358
- Applied in XENON1T: 4.5 μBq/kg achieved: EPJC (2021)81:337
- High flow radon removal system developed for XENONnT:

arXiv: 2205.11492

1.7 μBq/kg achieved



- Upscaling only possible for high throughput system.
- Processing speed for DARWIN must be >=10 tons/day.
- Efficiency in power consumption and xenon holdup versus radon reduction is crucial.



### <sup>222</sup>Rn emanation measurements at MPIK



- ► MPIK <sup>222</sup>Rn infrastructure:
  - >20 ultralow background miniaturized proportional counters
    - Sensitivity: ~10 atoms.
    - 8 parallel counting lines.
  - ► Fully automated <sup>222</sup>Rn concentration system (AutoEma).
  - $\sim$  15 sample vessels (0.1 80 lit.).
  - 3 electro-static <sup>222</sup>Rn monitors.





# Investigated vacuum coating techniques

- Physical vapor deposition (PVD).
  - Titanium sputtering.
- Chemical vapor deposition (CVD).
  - Amorphous hydrogenated carbon coating (a-C:H).
- Copper plasma deposition.







### Thornton structure zone model:



- Sputtering is low temperature process.
- Growth of vertically aligned grain boundaries.
- May block reactive gases (corrosion protection), but "diffusion highway" for noble gases.
- Focus on high temperature applications (plasma coating) or non vacuum-growth technique.
- But what about CVD?

# Summary of results from 1st phase

|   | Method                          | Coated<br>material | Company                         | <sup>220</sup> Rn reduction | <sup>222</sup> Rn reduction |
|---|---------------------------------|--------------------|---------------------------------|-----------------------------|-----------------------------|
|   | Sputtering                      | Ti                 | Europcoating                    | 1 – 5                       | ~1                          |
|   | Plasma<br>deposition            | Cu                 | Dr. Laure                       | 2 – 20                      |                             |
| / | Chemical<br>vapor<br>deposition | С                  | Innovative Coating<br>Solutions | ~3                          | ~1,5                        |
|   | Electro<br>chemical             | Cu on W            | MPIK                            | O(100)                      | 1 – 8                       |
|   | Electro<br>chemical             | Cu on SS           | MPIK                            | 20 – 1000                   |                             |

Focus on electro-chemical plating (but don't forget plasma deposition).

# Optimization of Cu coating procedure and <sup>220</sup>Rn reduction results





- Optimum surface current density identified.
- Avoid whisker growing by careful parameter control.
- Diffusion-driven emanation confirmed by tests at different temperatures.
- Even hints for slight <sup>222</sup>Rn reduction.

### Novel <sup>222</sup>Rn sources

21



- 226Ra implantation in SS, Cu, Ti, Pb, Ge, Si, PTFE, SiO<sub>2</sub>, acrylic.
- 20 24 new samples.
- Similar development at PTB (Braunschweig)
   Traceable <sup>222</sup>Rn sources.
- Deposition on an active Si detector allows online emanation rate monitoring.







Applied Radiation and Isotopes 196 (2023) 110726

# Coating of the 1st ISOLDE sample



- Standard MPIK electrochemical Cu-on-SS coating recipe applied.
- 222Rn emanation rate
  - $\blacksquare$  Before coating: (2.00 ± 0.05) Bq.
  - After coating:  $(4.3 \pm 0.3)$  mBq.
- Unexpected large <sup>222</sup>Rn reduction factor: ~465.
- Gamma spectroscopy results:

| Activity [Bq]                | <sup>226</sup> Ra (186 keV) | <sup>222</sup> Rn daughters |
|------------------------------|-----------------------------|-----------------------------|
| ISOLDE sample before coating | 8.4 ± 1.0                   | 6.0 ± 0.3                   |
| ISOLDE sample after coating  | 7.7 ± 1.0                   | 7.2 ± 0.4                   |
| Electrolyte after coating    |                             | 0.34 ± 0.02                 |

23

# X-ray diffraction







- Very preliminary study.
- Done at Heidelberg University (IMSEAM: Institute for molecular systems engineering and advanced materials).
- Basic features as expected, but some unexplained effects:
  - Amplitude ratios doesn't always match expectation (directionality in lattice?).
  - Peak positions slightly shifted (material stress?).
  - Not understood low intensity peaks.