A Radio Telescope Search For Dark Matter in the L and S Bands

Aya Keller, Nicole Wolff, Anna Dawes, Alexander Leder, Karl van Bibber
University of California Berkeley
August 30, 2023

Introduction

- The nature of dark matter is still a mystery
- Broad range of models over many orders of magnitude in mass
- Broadened theoretical scope ⇒ broadened observational approach
- We have developed a *model-independent* search technique relying on two assumptions:
 - Decay or annihilation of virialized dark matter in the halo
 - Frequency and intensity of the line corresponding to the expected phase space structure of the halo
- Using a unique resource, the Breakthrough Listen public data release of \sim 25,000 spectra (1.1-11.6 GHz) from the Green Bank Telescope

Aya Keller et al. ApJ 927 (2022) 71, https://doi.org/10.48550/arXiv.2203.11246

General Concept & Assumptions

- O Dark matter constitutes a static halo through which our solar system is moving with a characteristic velocity $V_S \sim 225$ km/s tangential to our galactic disk, and with a virial velocity $\sigma \sim 250$ km/s
 - A quasi-monochromatic radio line produced by the possible radiative decay or annihilation of ultralight dark matter would be distinguished from any other source by a systematic Doppler shift with respect to the Sun's direction of motion.
- O The signal should reflect the spatial distribution as represented by a standard halo model
 - The signal should be proportional to the line-integrated density of the halo ρ for decay, or ρ^2 for a two-body initial state

In other words, given this unique database – 3 months observation over $\sim 4\pi$ – this search asks the question:

"Is there anything with the distribution of the halo that is emitting in the radio spectrum?"

General Concept * Mercator projections of targets used in the L-band analysis 75° 60° Forward Backward Solar velocity • 240° 270° 300° 330° ν [MHz] -75° **Doppler Asymmetry** 75° 60° Inward Outward Solar velocity 30° 15° 210° 240° 270° 300° 330° -15° ν [MHz] -75° **Intensity Asymmetry**

The Breakthrough Listen data set

- Breakthrough Listen public data release from the Green Bank Telescope
 - Spans 3 years
 - ~ 1700 nearby Hipparcos catalog stars and 100 nearby galaxies
 - o L-, S-, C- and X-band (1.1-11.6 GHz)
 - ABACAD on-off target run cadence, 30 min. total
- Raw spectra (a) are imprinted with the polyphase filterbank structure repeated every 1024 channels (~2.93 MHz) (b)
- Spectra also characterized by quasi-periodic \sim 15 MHz undulation, \sim 10% in magnitude (c)

Analysis – Normalization Scheme

$$F(\chi^2) = \frac{1}{1 + e^{\frac{\log(\chi^2) + \alpha}{\beta}}}$$

α

$$N(\nu) = 1 + F(X^2) \frac{G(\nu)}{P(\nu)}$$

Where:

G(v): Fitted Gaussian

P(v): Fitted polynomial

 $F(\chi^2)$: Fermi function

0.995

0.990 | 2310

2315

2320

2325

2330

• The normalization scheme is a ratio of a fitted polynomial + positive-definite Gaussian, to the polynomial. A chi-squared factor weighting factor is then applied to eliminate the bad fits (noisy regions)

2335

Spectral Flux Density - Annihilation

General:

$$\left(\frac{P^A}{\Delta A \cdot \Delta \nu}\right) = \frac{1}{64} \cdot \sqrt{\frac{\pi}{2}} \cdot \frac{\langle \sigma \cdot v \rangle}{M_{\chi} \cdot \eta^A \cdot \nu_0} \cdot (\Delta \theta)^2 \cdot \exp\left[-\frac{1}{2} \left(\frac{\nu - \nu_0}{\eta^A \nu_0}\right)^2\right] \cdot \int_0^\infty \rho^2(\vec{r}) \ d\vec{r}$$

GBT:

$$\left(\frac{P^A}{\Delta A \cdot \Delta \nu}\right) \left[W \ m^{-2} H z^{-1}\right] \ = \ 0.020 \cdot \frac{\langle \sigma \cdot \nu \rangle \left[cm^3 s^{-1}\right]}{\eta^A \cdot M_\chi [\mu eV] \cdot (\nu [GHz])^3} \cdot \exp\left[-\ \frac{1}{2} \left(\frac{\nu - \nu_0}{\eta^A \nu_0}\right)^2\right] \cdot \ I^A(\mathsf{I},\mathsf{b}) \left[\frac{M_S^2}{kpc^5}\right]$$

where $\eta^A = \frac{1}{\sqrt{6}} \cdot \frac{\sigma}{c}$; this depends on the virial velocity σ ; $\eta^A \approx 3.7 \times 10^{-3}$

 $I^A(l,b)$ is the line integral for annihilation

 M_{χ} is the mass of the annihilating dark matter particle

Spectral Flux Density - Decay

General:

$$\left(\frac{P^D}{\Delta A \cdot \Delta \nu}\right) = \frac{1}{64} \cdot \sqrt{\frac{\pi}{2}} \cdot \frac{\lambda}{\eta^A \cdot \nu_0} \left| \cdot (\Delta \theta)^2 \cdot \exp\left[-\frac{1}{2} \left(\frac{\nu - \nu_0}{\eta^A \nu_0}\right)^2\right] \cdot \int_0^\infty \rho(\vec{r}) \, d\vec{r}$$

GBT:

$$\left(\frac{P^D}{\Delta A \cdot \Delta \nu} \right) \left[W \ m^{-2} H z^{-1} \right] \ = \ 5.3 \ \text{x} \ 10^{-8} \cdot \frac{\lambda \left[s^{-1} \right]}{\eta^D \cdot (\nu [G | H z])^3} \cdot \exp \left[- \frac{1}{2} \left(\frac{\nu - \nu_0}{\eta^D \nu_0} \right)^2 \right] \cdot \ I^D(\mathsf{I}, \mathsf{b}) \left[\frac{M_S}{kpc^2} \right]$$

where $\eta^D = \frac{1}{\sqrt{3}} \cdot \frac{\sigma}{c}$; this depends on the virial velocity σ ; $\eta^D \approx 5.2 \times 10^{-4}$ $I^D(I,b)$ is the line integral for decay

Doppler asymmetry analysis (S Band example)

- Target samples: $\theta_F = 69^\circ$, $\theta_B = 78^\circ$, total F: 1410, B: 1442 targets
- Form the observed asymmetry spectrum: $A_D(\theta, \nu) = \frac{F B}{F + B}$, $F(\nu) = \frac{1}{N} \cdot \sum_i f_i(\nu)$ similarly for
- Form the sample-specific template, with appropriate Doppler shift $v' = v \cdot (1 \pm \frac{V_o}{c} \cdot \cos \theta)$ & line-integrals for each target
- Create the correlation spectrum by taking the dot-product of the template with the asymmetry: $R_D(v) = T \cdot A_D(v)$

Intensity asymmetry analysis (S Band example)

- Analysis follows in a completely analogous way to the Doppler asymmetry: $A_I(\Phi, \nu) = \frac{I O}{I + O}$, etc.
- $\Phi_1 = 45^{\circ}$ (171 spectra) , $\Phi_0 = 133^{\circ}$ (917 spectra)

P-value analysis

- A signal was injected at 50 MHz intervals starting from 1850 MHz
- The STD for the p-value calculation was a rolling STD with a 35 MHz window

Example heatmap with signal at 1950 MHz and 2000 MHz

$$\langle \sigma v \rangle = 1 \times 10^{-43} cm^3 sec^{-1}$$

Correction for stimulated emission

- For any one- or two-photon process, the flux is enhanced (and thus the limits strengthened) by stimulated emission from all sources of photons in the galactic halo.
- The three dominant terms are (i) the diffuse galactic emission (strongly peaked towards the galactic center),
 (ii) the extra-galactic radio background, and (iii) the CMB.
- The first two dominate but fall strongly with frequency.

$$f_{\gamma}(\ell, \Omega, m_a) \simeq f_{\gamma, \text{CMB}}(m_a) + f_{\gamma, \text{gal}}(\ell, \Omega, m_a) + f_{\gamma, \text{ext-bkg}}(m_a)$$

Limits

Solid line: 1-photon final states; Dashed line: 2-photon final states

Future plans

- Exploration of sensitivity for different cases of solar and virial velocities
- Decay analysis
- Will incorporate Parkes data to provide full galactic coverage
- Other hypothesis-driven searches may benefit from techniques to selectively detect very weak, broad signals

Acknowledgments

- We warmly acknowledge the support and assistance of the Berkeley Breakthrough Listen team, especially Andrew Siemion, Steve Croft and Matt Lebofsky
- We are profoundly grateful for the continual support of the Heising-Simons Foundation
- Furthermore, we thank Kathryn Zurek, Sam Witte, Edoardo Vitagliano, Ben Safdi and Hitoshi Murayama for many clarifying conversations throughout the course of the project

