Constraints on dark matter-neutrino scattering from the Milky-Way satellites and subhalo modeling for dark acoustic oscillations

Kensuke Akita (IBS-CTPU)

with

Shin'ichiro Ando (U. Amsterdam, GRAPPA and U. Tokyo, IPMU)

arXiv: 2305.01913

accepted in JCAP 20th year anniversary edition

Dark Matter (DM)

DM is gravitationally confirmed by cosmological observations,

e.g., structure formation.

DM properties:

- 27 % of the total energy of the universe
- Massive
- Stable

However, we don't know

- mass
- interactions beyond gravity.

https://map.gsfc.nasa.gov/media/121238/index.html

https://www.darkenergysurvey.org/supporting-science/large-scale-structure/

Structure formation of the universe

The potential of DM is required for galaxy formation.

DM property:

Non-relativistic

Can we learn more from structure formation?

Relativistic particle grows less by its large velocity dispersion.

Dark acoustic oscillations (DAOs)

If DM has interactions with relativistic particles,
 DM fluctuations are suppressed due to their pressure.

DM oscillations between gravity and pressure:
 Dark acoustic oscillations

We can test DM interactions from the structure formation.

DM-Neutrino scattering

 We focus on the DM-relic cosmic neutrino scattering.

$$\sigma_{{
m DM-}
u,n} \propto E_{
u}^{n}, \quad (n=0,2,4)$$
 Neutrino energy

• The matter power spectrum P(k) on small-scale is suppressed.

Milky-Way (MW) satellite galaxies

Milky-Way satellite galaxies, objects on small-scale structure, would have very good information to test <u>DM-neutrino interactions</u>.

Suppression of the matter power spectrum

→reducing the number of satellites

In this talk,

- · We develop a subhalo model for DAOs.
- We constrain DM-neutrino scattering using the latest data of MW satellites.

Outline

- Introduction
- Subhalo modeling for dark acoustic oscillations
- Constraints on DM-neutrino scattering from the MW satellites
- Conclusions

Schematic history of dark matter

 DM decouples with neutrinos in the linear region for weak DM-neutrino interactions.

- DM gravitationally collapses, forming halos.
- · Halos merge, forming subhalos.

Semi-analytical subhalo model is needed!

Subhalo modeling for dark acoustic oscillations

Initial condition:

Modeling:

· DM fluctuations are spherically smoothed:

$$\delta(\boldsymbol{x};R) = \int \delta(\boldsymbol{x'})W(\boldsymbol{x} - \boldsymbol{x'};R)d^3x',$$

$$W(\boldsymbol{x} - \boldsymbol{x'};R) \begin{cases} <1 & |\boldsymbol{x} - \boldsymbol{x'}| \lesssim R \\ =0 & |\boldsymbol{x} - \boldsymbol{x'}| \gtrsim R \end{cases}$$

We adopt the smooth-k filter (in the Fourier space):

This is different from CDM and WDM cases.

$$\widetilde{W}^{\text{smooth-k}}(kR) = \frac{1}{1 + (kR)^{\beta}} \qquad \beta = 3.5$$

• DM spherically collapses into halos with $M(\leftrightarrow R)$ at a threshold value of $\delta_c=1.686\,$ at $z=0\,$.

Subhalo modeling for dark acoustic oscillations

Modeling:

Distribution of halos and subhalos:

Extended Press-Schechter formalism

-Subhalo distributions at $z=z_a$

$$\frac{d^2 N_{\rm a}}{dm_a dz_a} \propto \frac{1}{\sqrt{2\pi}} \frac{\delta_a - \delta_M}{(s_a - S_M)^{3/2}} \exp\left[-\frac{(\delta_a - \delta_M)^2}{2(s_a - S_M)}\right]$$

Smoothed fluctuation and standard deviation with mass

m : subhalo mass M : Host halo mass

Tidal stripping:

$$\dot{m}(z) = -A \frac{m(z)}{\tau_{\text{dyn}}(z)} \left[\frac{m(z)}{M(z)} \right]^{\zeta}$$

Fitting parameters

Comparison with N-body simulations

To confirm that our model is correct, it is necessary to be compared to N-body simulations.

- Unfortunately, there is no such simulation for DM-neutrino interactions.
- There is simulations for DM-Dark Radiation (DR) interactions (called ETHOS models).

 [M. Vogelsberger, et al. (2016)]

 Our model is in very good agreement with the simulations within a factor of 1.8!

Constraints on DM-neutrino scattering

We use the latest data of 270 Milky-Way satellite galaxies from Dark Energy Survey (DES) and PanSTARRS1 (PS1).

[DES collaboration (2020)]

Imposing a satellite forming condition, we obtain the strongest constraints of $\sigma_{\mathrm{DM-}\nu,n} \propto E_{\nu}^{n} \quad (n=0,2,4)$ at 95% CL:

$$\sigma_{\text{DM}-\nu,0} < 4 \times 10^{-34} \text{ cm}^2 (m_{\text{DM}}/\text{GeV})$$

$$\sigma_{\text{DM}-\nu,2} < 10^{-46} \text{ cm}^2 (m_{\text{DM}}/\text{GeV})(E_{\nu}/E_{\nu}^0)^2$$

$$\sigma_{\text{DM}-\nu,4} < 7 \times 10^{-59} \text{ cm}^2 (m_{\text{DM}}/\text{GeV})(E_{\nu}/E_{\nu}^0)^4$$

 $E_{\nu}^{0} \simeq 6.1~K$; the average momentum of relic cosmic neutrinos

Conclusions

- DM-radiation interactions induces dark acoustic oscillations (DAOs), suppressing the structure formation due to radiation pressure.
- We have developed a semi-analytical subhalo model for DAOs.
- Our model is in very good agreement with N-body simulations within a factor of 1.8.
- Using the latest data of Milky-Way satellite galaxies from DES and PS1, we have obtained the most stringent constraints on DM-neutrino

scattering of $\sigma_{\mathrm{DM}-\nu,n} \propto E_{\nu}^{n} \ (n=0,2,4)$:

 $\sigma_{\text{DM}-\nu,0} < 4 \times 10^{-34} \text{ cm}^2 (m_{\text{DM}}/\text{GeV})$ $\sigma_{\text{DM}-\nu,2} < 10^{-46} \text{ cm}^2 (m_{\text{DM}}/\text{GeV})(E_{\nu}/E_{\nu}^0)^2$ $\sigma_{\text{DM}-\nu,4} < 7 \times 10^{-59} \text{ cm}^2 (m_{\text{DM}}/\text{GeV})(E_{\nu}/E_{\nu}^0)^4$

Thank you!

Backup

Why structure formation? DM-neutrino scattering?

Why structure formation?

- We can test light DM scattering with neutrinos, baryons, photons and dark radiations.
- Even if DM is heavy (GeV-scale), asymmetric DM scenarios is not well constrained.
 DM does not annihilate today.
 →Indirect searches are ineffective.
- · <u>Large</u> DM scattering cross sections may also be achieved in <u>asymmetric DM scenarios</u>.

Why DM-neutrino (relic cosmic neutrino) scattering?

· We may impose relatively strong constraints on DM scattering with the lepton sector.

Muon,tau rapidly decay \to DM would not scatter with mu, tau. $U(1)_{L_{\mu}-L_{\tau}}$ symmetry etc \to DM-electron interactions would be suppressed.

Comparison with constraints from high energy neutrinos

Observations of neutrinos with $E_{\nu} \sim 10~{
m Te}$ From an active galaxy NGC 1068:

$$\sigma_{{\rm DM}-\nu} \lesssim 10^{-30} \ {\rm cm}^2 \ (m_{{\rm DM}}/{\rm GeV})$$

[J. M. Cline, M. Puel (2023)]

There is no simple comparison between cosmological and astrophysical constraints <u>due to the different energy scales of neutrinos</u>.

Ex1) Dirac fermion DM, scalar mediator

• Milky-Way satellites:
$$m_{\mathrm{mediator}} \gtrsim m_{\mathrm{DM}} \gg E_{\nu}$$

$$\sigma_{\mathrm{DM-\nu}} \simeq \frac{g^2 g'^2 E_{\nu}^2}{2\pi m_{\phi}^4},$$

$$g \lesssim 8 \times 10^{-5} \left(\frac{g'}{1}\right)^{-1} \left(\frac{m_{\mathrm{DM}}}{\mathrm{MeV}}\right)^{1/2} \left(\frac{m_{\phi}}{\mathrm{MeV}}\right)^2 \left(\frac{E_{\nu}}{E_{\nu}^0}\right)^{-1} \left(\frac{\sigma_{\mathrm{DM-\nu}}/m_{\mathrm{DM}}}{10^{-49} \mathrm{~cm}^2/\mathrm{MeV}}\right)^{1/2}.$$

• <u>High energy neutrinos</u>: $E_{\nu} \gg m_{\rm mediator} \gtrsim m_{\rm DM}$ $\sigma_{\rm DM-\nu} \simeq \frac{g^2 g'^2}{32\pi F_{...} m_{\rm DM}},$

$$g \lesssim 5 \times 10^{-2} \left(\frac{g'}{1}\right)^{-1} \left(\frac{m_{\rm DM}}{\rm MeV}\right) \left(\frac{E_{\nu}}{10 \text{ TeV}}\right)^{1/2} \left(\frac{\sigma_{\rm DM-\nu}/m_{\rm DM}}{10^{-33} \text{ cm}^2/\text{MeV}}\right)^{1/2}.$$

Ex2) Dirac fermion DM, vector mediator

• Milky-Way satellites: $m_{\rm mediator} \gtrsim m_{\rm DM} \gg E_{\nu}$

$$\sigma_{{
m DM}-
u} \simeq rac{g^2 g'^2 E_
u^2}{2\pi m_\phi^4},$$

$$g \lesssim 8 \times 10^{-5} \left(\frac{g'}{1}\right)^{-1} \left(\frac{m_{\rm DM}}{\rm MeV}\right)^{1/2} \left(\frac{m_{\phi}}{\rm MeV}\right)^2 \left(\frac{E_{\nu}}{E_{\nu}^0}\right)^{-1} \left(\frac{\sigma_{\rm DM-\nu}/m_{\rm DM}}{10^{-49}~{\rm cm^2/MeV}}\right)^{1/2}$$

• High energy neutrinos: $E_{\nu} \gg m_{\rm mediator} \gtrsim m_{\rm DM}$

$$\sigma_{{
m DM}-
u} \simeq rac{g^2 g'^2}{4\pi m_\phi^2},$$

$$g \lesssim 6 \times 10^{-6} \left(\frac{g'}{1}\right)^{-1} \left(\frac{m_{\phi}}{\mathrm{MeV}}\right) \left(\frac{m_{\mathrm{DM}}}{\mathrm{MeV}}\right)^{1/2} \left(\frac{\sigma_{\mathrm{DM-}\nu}/m_{\mathrm{DM}}}{10^{-33} \mathrm{~cm^2/MeV}}\right)^{1/2}.$$

Cosmological and astrophysical constraints are highly complementary!