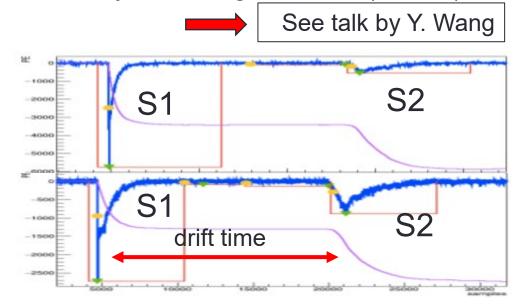


CHARACTERIZATION OF LOW-ENERGY ARGON RECOILS WITH THE RED EXPERIMENT

L. Pandola (LNS)


on behalf of the ReD Working Group (GADM Collaboration)

TAUP 2023, Wien August 29th, 2023

Physics background

- DarkSide program at Gran Sasso
 Laboratory, WIMPs search using dual phase Time Projection Chamber with
 low-radioactivity LAr
 - Operated a **50 kg TPC** (DS-50)
 - In preparation: 50 ton TPC (DS-20k)
 - Novel light readout with SiPM
 - Pave way for next-generation (ARGO)

The search for low-energy WIMPs

- LAr TPC sensitive in the search of low-mass WIMPs
 - A few GeV instead of the "standard" 100's GeV

- O(1 keV), instead of 20-100 keV
- Challenging!
 - S1 too small to be detected
 - S2-only events
 - Only ionization detected (~20 PE/e-)
 - DarkSide-LowMass

Agnes et al. PRD 107 (2023) 063001

- Analysis sensitive to ionization yield for keV NRs
 - Poorly known for Ar

Ar NRs ionisation yield at low energy

- Measurement within DS-50, with AmC and AmBe neutron sources
- Dedicated 2-parameter model

Thomas-Imel
$$1-r = \frac{1}{\bigcirc N_i} \ln(1+\gamma N_i)$$

$$Q_y^{NR} = \frac{N_{i.e.}}{E_{nr}} = \frac{(1-r)N_i}{E_{nr}}$$

$$N_i = \beta \ \kappa(\epsilon) = \beta \ \frac{\epsilon \ s_e(\epsilon)}{s_n(\epsilon) + s_e(\epsilon)}$$

$$N_i = \beta \ \kappa(\epsilon) = \beta \frac{\epsilon \ s_e(\epsilon)}{s_n(\epsilon) + s_e(\epsilon)}$$

Agnes et al. PRD 104 (2021) 082005

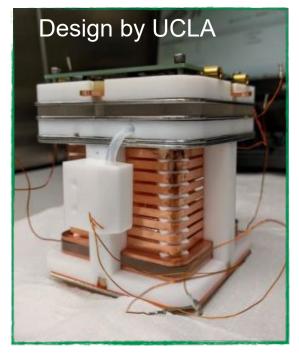
- Different screening models for s_n, possible low-E suppression for se
- Constrains only by small lowenergy sample from the AmC calibration of DS-50
 - No closed 2-body kinematics
- Strong case for a LAr direct measurement at 1-5 keV_{nr}

The working principle

- Strategy: Produce Ar recoils of known energy in the TPC by (n,n')
- Neutrons from a ²⁵²Cf fission source
 - Neutrons O(2 MeV) and up to 10 MeV
 - Appropriate to produce NR of a few keV

- Close detectors (BaF₂) to tag fission events
- Neutron spectrometer to detect neutrons scattered off-Ar

The ReD conceptual layout



THE INGREDIENTS

The TPC ...

- Miniaturized version of the DS-20k TPC
 - Active volume: 5(L) x 5 (W) x 6 (H) cm
 - Gas pocket: 7 mm thick
 - TPB coating for wavelength shifting
- DS-20k light readout: 5x5 cm² SiPM, 24x1cm² SiPM
 - 24 ch readout (top), for increased (x,y) resolution
 - 24x1cm² SiPM, 4 ch readout (bottom)
- Front End from the DS-20k R&D
- 3D event reconstruction:
 - (x,y) from S2 pattern on the top SiPMs
 - z from drift time (up to ~55 μs)
- In this campaign:
 - $g_2 = \sim 17 \text{ PE/e-} (E_{drift} = 200 \text{ V/cm}, E_{el} = 5.79 \text{ kV/cm})$
 - Electron lifetime > 1 ms

... and all the rest

- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle ~2°
 - Shines the entire TPC at 1 m distance
- Two BaF₂ detectors to tag fission products
 - Fast (high source rate, pile-up)
 - START for time of flight
- Neutron spectrometer: two 3x3 arrays of EJ276 plastic scintillators
 - STOP for time of flight
 - Features n/γ discrimination
 - 1 m downstream the TPC
 - Symmetric deployment to control systematics due to alignment
 - θ ~ 12°-17° in order to avoid direct neutrons from the source
- Tag Ar recoils down to ~1-2 keV_{nr}

The real thing at

PUTTING EVERYTHING AT WORK

Data taking & Co.

- Data taking with ²⁵²Cf from Jan 10th to Mar 16th, 2023
 - Event rate ~2.5 Hz, 80 μs waveforms (600 GB/day)
- Trigger logic: "any BaF" ∧ "any PSci"
 - Tagging ~60% of SF events
 - TPC acquired in slave mode (may fail to trigger in S1)
- Weekly calibration with laser and ¹³⁷Cs/²⁴¹Am
 - Calibrations and background runs used to determine and correct for non-homegeneity in the TPC response
- Detailed end-to-end MC simulation available
 - Produce synthetic data → same analysis flow than real data
 - Tuned and validated on calibrations
 - Check reconstruction algorithms!

ToF BaF-PSci [ns]

10²

Finding neutrons.

- Event rate dominated by γrays and accidentals
- Selection of candidate neutrons by time of flight and PSD
 - About 28 events/hour (0.3%)
- ToF resolution ~ 0.7 ns
- Event-by-event E_n at <5%

... interacting in the TPC

- Look for TPC events offline
 - Analysis flow: de-convolution of SiPM response function, TPC pulse finder
- From MC: pulse finder fully efficient for S1 > 25 PE, S2 > 4 e-
- Selection cuts:
 - One S2 within 65 μs from BaF₂ and optionally, an S1 (< 100 PE)
 - If S1 available, consistent BaF-TPC tof
 - No tails of previous S2 pulses
 - (x,y) in the central 4x4 cm region (fiducialization)
- Final sample: ~820 passing all cuts, out of 2300 candidate neutron events w/ TPC signal
 - 75% are S2-only (~ as in MC)
 - Expected: S1~8 PE for 5 keV_{nr}

The sample of low-energy recoils

- Get E_{NR} from time of flight (and geometry), uncert. ±5%
- Most S1+S2 outliers: multiple neutron scattering (→ confirmed by MC)

The sample of low-energy recoils

- Get E_{NR} from time of flight (and geometry), uncert. ±5%
- Most S1+S2 outliers: multiple neutron scattering (→ confirmed by MC)
- Using S2-only: E_{NR} down to 1-2 keV_{nr}
- Compare against the prediction of the DS-50 model and literature data, using a preliminary value of g₂
 - g₂ = 17.2 PE/e-, based on cross-calibration with DS-50
 - Work in progress to infer g₂ directly from ReD data

Conclusions and outlook

- ReD measured the response of a miniaturized LAr dual-phase
 TPC to O(keV) nuclear recoils @INFN Catania (Jan-Mar 2023)
 - Neutrons produced by a ²⁵²Cf fission source
 - BaF₂ taggers and neutron spectrometer to detect neutrons scattered off the TPC → two-body kinematics
 - Complemented by a full Monte Carlo simulation
- Design sensitivity met: E_{NR} down to 1-2 keV_{nr}
 - Next step: use the ReD experimental data to constrain the parameters in the DS-50 ionization model (fit of data against MC distributions)
- Future: ReD+, to cover down to 0.4 keV_{nr} with ²⁵²Cf (Italian PRIN funding) and DD neutron gun (Brasilian FAPESP grant)
- Information crucial for "low-mass WIMP" analysis of current DM experiments and for the design of next-generation