SPICE: A Search for Light (MeV - GeV) Dark Matter Using Polar Crystal Calorimeters

Roger K. Romani for the SPICE/HeRALD Collaboration

The Search for DM Direct Detection 30 Years On

Still no sign of DM in the laboratory!

- WIMPs (~10 GeV ~100 TeV): mature technologies, big collaborations, nearing limits
- Axions/ALPs (less than 1 eV): rapid development of many good ideas
- "Light DM" (~100 keV- ~1 GeV): exciting new technologies, new motivations

General Light DM Direct Detection Design Drivers

- As M_{DM} goes down, n_{DM} goes up given constant ρ_{DM}
 - Don't need huge exposure to get to interesting cross sections
- As M_{DM} goes down, E_{dep} goes down as well
 - Main challenge of light DM direct detection: detect very small energy depositions
 - True even for different models, materials

SPICE/HeRALD*: A New Light DM Collaboration

Different direct detection mediums unified by a **Transition Edge Sensor** based readout

SPICE/HeRALD: A New Light DM Collaboration

Different direct detection mediums unified by a **Transition Edge Sensor** based readout

TES Based Calorimetry Basics

Materials

Different Models, Different Materials of Choice

Light dark photon mediator (Sec. III, Fig. 1)			
Detection channel	Quantity to maximize to reach		Best materials
	lower m_{χ}	lower $\overline{\sigma}_e$	Dest materials
(Optical) phonons	ω_O^{-1} (Eq. (24))	quality factor Q defined in Eq. (27)	SiO_2 , Al_2O_3 $CaWO_4$
Electron transitions	E_g^{-1} (Eq. (28))	depends on details of electron wavefunctions	InSb, Si
Nuclear recoils	$\left(A\omega_{\min}\right)^{-1}$ (Eq. (29))	$(Z/A)^2 \omega_{\min}^{-1} \text{ (Eq. (31))}$	diamond, LiF
Hadrophilic scalar mediator (Sec. IV, Figs. 2, 3)			
Detection channel	Quantity to maximize to reach		Best materials
	lower m_{χ}	lower $\overline{\sigma}_n$	Dest materials
(Acoustic) phonons	$c_s/\omega_{ m min}$ (Eq. (36))	Light mediator: ω_{\min}^{-1} (Eq. (35))	$\operatorname{diamond}\left(\operatorname{SiO}_{2}\right)$
		Heavy mediator: c_s^{-1} or $\omega_{ m ph}^{-1}$ or $A\omega_{ m ph}$	all complementary
		depending on m_{χ} (Eqs. (37), (38), (39))	
Nuclear recoils	$(A\omega_{\min})^{-1}$ (Eq. (29))	Light mediator: ω_{\min}^{-1} (Eq. (40))	diamond, LiF
		Heavy mediator: A (Eq. (43))	CsI, Pb compounds

Sapphire as a SPICE Target

- Low mass oxygen nuclei as NRDM scattering target
- Polar unit cell: optical phonons down to 100s of meV
 - Dark photon coupling due to differently charged nuclei
- Prototype detector has been run

TESSERACT SNOWMASS LOI

GaAs as a SPICE Target

- Polar crystal: coupling to dark photons
- Scintillation + phonon signal allows for NR/ER discrimination down to eV scale signals
- GaAs scintillation yield being measured

SiO₂ as a SPICE Target

- Excellent coupling to dark photons, high "quality factor"
 - See arXiv: 1910.10716
- TESs on SiO2 substrate tested

TES Readout Technology

Two Key Design Drivers:

- Good energy resolution
 - Excess noise limits resolution
- Low background
 - Excess events limits reach

Don't understand either!

Low Energy Backgrounds: "LEE"

See EXCESS 2023 Review
by Dan Baxter
K. Romani

Stress Causes LEE-Like Events!

- Compare: high/low stress (hanging/glued) detectors
- Found: stress causes LEE-like events!
- Another source... films?

Films Cause LEE? Two Channel Devices

Two components of LEE:

- "Shared" events: phonon pulse shape, partitioning
- "Singles:" single channel partitioning, faster pulse
 - Film events!

- 3.0

Excess Noise

- Signal band: completely dominated by excess noise
 - Can't improve by lowering Tc, shrinking TESs...
- Split into noise in one sensor, shared between two sensors...

Excess Noise

- Signal band: completely dominated by excess noise
 - o Can't improve by lowering Tc, shrinking TESs...
- Correlated: consistent with excess very small phonon pulses
- Uncorrelated: consistent with fast events right in TESs

Excess noise: sub-threshold shared/single events?

Everything Goes Down Over Time!

Relaxation (of stress?) causing both problems: excess events + excess noise

- Excess noise limiting mass reach
- Excess events limiting cross section reach/backgrounds

Solve this problem, low mass DM searches are open for business!

SPICE/HeRALD: An Exciting Light DM Program

- A suite of materials, with advantages for different model and readouts
- Cutting edge calorimeter R&D, making strong progress towards solving LEE
- An exciting near-term program of DM limits expected

