Spin-1 Thermal Targets for Dark Matter Searches at Fixed Target Experiments

arXiv:2307.02207

Taylor R. Gray^a
In collaboration with Riccardo Catena^a

^aChalmers University of Technology
Supported by a research grant from the Wallenberg foundation

TAUP Vienna 2023

- Was once in thermal equilibrium w SM
- mass: ~ MeV GeV
- interacts w SM via a new hypothetical dark mediator particle

Sub-GeV Dark Matter

Thermal equilibrium between DM and SM in the early universe.

Thermal DM Window

- Sub-GeV DM is largely experimentally unexplored..
 - Out of reach of nuclear recoil direct detection exps

- DM produced through freeze-out near weak scale
- GeV-TeV scale thermal DM already widely tested

Sub-GeV Dark Matter

 Fixed target experiments can probe sub-GeV DM

 Future fixed target experiments such as LDMX will reach new sensitivities in the sub-GeV mass range.

See Lene Kristian's talk next on LDMX!

Sub-GeV Dark Matter

- Fixed target experiments can probe sub-GeV DM
- Future fixed target experiments such as LDMX will reach new sensitivities in the sub-GeV mass range.
- How about spin-1 DM?

arXiv:1807.0170

The Goal

- Broaden the existing studies on sub-GeV DM at fixed target experiments
- We consider,
 - 1. a set of simplified spin-1 DM candidates which have a dark photon mediator X, A'
 - 2. a renormalizable, UV complete SIMP spin-1 DM model with two mediators X, A', X_3

Electron Dark-Bremsstrahlung

+ (In)Visible Decay

e⁻ beam

LDMX [Light Dark Matter experiment] (arXiv:1808.05219)

- Future Experiment
- Missing Energy/Momentum experiment
- pT and E distributions of recoil e⁻
- NA64 (arXiv:1906.00176)
 - Missing Energy
 - E distributions of recoil *e*⁻

SLAC E137 (arXiv:1406.2698)

Proton Beam Dumps with Downstream DM Detector BdNMC software

LSND (arXiv:1107.4580)

DM-electron scattering

(a) π^0 , η Decay

(b) Proton Bremsstrahlung

MiniBooNE (arXiv:1702.02688)

DM-electron/nucleon scattering

Monophoton Searches

$$e^+e^- \rightarrow \gamma A', A' \rightarrow XX$$

- BaBar (arXiv:1702.03327)
- Belle II
 - Future experiment

Direct Detection (arXiv:2210.07305)

- Sensei
- Xenon1T
- Xenon10

CMB

• anisotropies measurements by Planck constrain the annihilation parameter, P_{ann}

$$P_{ann} \equiv f(z) \frac{<\sigma v>_{\chi\chi\to f\bar{f}}}{m_\chi}$$

$$P_{ann} \lessapprox 3.2\times 10^{-28} cm^3 s^{-1} GeV^{-1}$$
 (Planck 2018)

IGM temperature

 Lyman-α forest measurements, we require that the energy injected into the IGM does not overheat it at late times

Unitarity Violation

 $|\operatorname{Im}(M_{ii}^J)|, 2|\operatorname{Re}(M_{ii}^J)| \le 1$

If the matrix elements in the theory are too large at tree level, additional fields or higher order diagrams are needed to restore unitarity of the S matrix.

arXiv:1510.02110: simplified *DM*

arXiv:2303.08351: spin-1 DM self scattering

 Need to be careful of this for the simplified spin-1 DM models...

 But, the renormalizable and UV complete SIMP spin-1 DM model by construction does not violate unitarity!

Simplified Spin-1 Dark Matter Models

with a Dark Photon Mediator

$$-\mathcal{L} \supset \left(ib_5 X_{\nu}^{\dagger} \partial_{\mu} X^{\nu} A^{\prime \mu} + b_6 X_{\mu}^{\dagger} \partial^{\mu} X_{\nu} A^{\prime \nu} + b_7 \epsilon_{\mu\nu\rho\sigma} \left(X^{\dagger\mu} \partial^{\nu} X^{\rho} \right) A^{\prime\sigma} + h.c. \right) + \frac{h_3}{4} A_{\mu}^{\prime} \bar{f} \gamma^{\mu} f$$

b₅: real

b₆: complex

b₇: complex

h₃: real

 $h_3 \equiv \epsilon e$

f: SM leptons and quarks(excluding neutrinos)

If $2m_X < m_A$, s-channel dominates DM annihilations.

Strong Limits on Spin-1 Relic Targets

Large MiniBooNE limits due to $\sigma_{\chi e^- \to \chi e^-}$ being large when m_χ is small

Ruled out by current experiments and CMB

Spin-1 DM is the first to be probed by LDMX!

$$b_5 \to g_X$$

$$\Im[b_6] \to -g_X/2$$

$\mathfrak{J}^{b_5 \to g_X}_{\mathfrak{J}[b_6] \to -g_X/2}$ SIMP Spin-1 Dark Matter $SU_X(2) \times U_{Z'}(1)$

with Z' and X_3 as mediators

$$-\mathcal{L} \supset -ig_{X} \cos \theta_{X}^{\prime} \left[\left(\partial^{\mu} X^{\nu} - \partial^{\nu} X^{\mu} \right) X_{\mu}^{\dagger} \tilde{X}_{3,\nu} - \left(\partial^{\mu} X^{\nu\dagger} - \partial^{\nu} X^{\mu\dagger} \right) X_{\mu} \tilde{X}_{3,\nu} + X_{\mu} X_{\nu}^{\dagger} \left(\partial^{\mu} \tilde{X}_{3}^{\nu} - \partial^{\nu} \tilde{X}_{3}^{\mu} \right) \right]$$

$$-ig_{X} \sin \theta_{X}^{\prime} \left[\left(\partial^{\mu} X^{\nu} - \partial^{\nu} X^{\mu} \right) X_{\mu}^{\dagger} \tilde{Z}_{\nu}^{\prime} - \left(\partial^{\mu} X^{\nu\dagger} - \partial^{\nu} X^{\mu\dagger} \right) X_{\mu} \tilde{Z}_{\nu}^{\prime} + X_{\mu} X_{\nu}^{\dagger} \left(\partial^{\mu} \tilde{Z}^{\prime\nu} - \partial^{\nu} \tilde{Z}^{\prime\mu} \right) \right]$$

$$-e\varepsilon \cos(\theta_{X}^{\prime}) \tilde{Z}_{\mu}^{\prime} \bar{f} \gamma^{\mu} f + e\varepsilon \sin(\theta_{X}^{\prime}) \tilde{X}_{3\mu} \bar{f} \gamma^{\mu} f$$

$$(1)$$

$$\sin(\theta_X') \ll \cos(\theta_X')$$

 \rightarrow mainly Z's are produced at fixed target experiments

processes setting the \rightarrow $X_+X_+X_- \rightarrow X_+\tilde{X}_3$ relic density $X_+X_- \rightarrow \tilde{X}_3 \tilde{X}_3$

Dominant since $g_X \gg e\epsilon$

arXiv:1904.04109

$$m_X^2 < m_{\tilde{X}_3}^2 < m_{\tilde{Z}'}^2$$

Weaker beam dump limits since DM - e⁻ scattering cross section is suppressed

Relic density is independent of ϵ , entire region consistent w Planck!

Taylor R. Gray | TAUP 2023

Summary

- Extending the current landscape of sub-GeV DM models considered in the context of fixed target experiments
- Spin-1 sub-GeV DM
 - where $m_{A'} > 2m_X$
- First model to be probed at upcoming LDMX!!

Future

- Consider m_A , $< 2m_X$
 - visible decays
- Additional UV complete spin-1 DM scenarios

Danke!

Backup Slides

SIMP spin-1 DM

$$SU_X(2) \times U_{Z'}(1)$$

$$-\mathcal{L} \supset -ig_{X} \cos \theta_{X}^{\prime} \left[\left(\partial^{\mu} X^{\nu} - \partial^{\nu} X^{\mu} \right) X_{\mu}^{\dagger} \tilde{X}_{3,\nu} - \left(\partial^{\mu} X^{\nu\dagger} - \partial^{\nu} X^{\mu\dagger} \right) X_{\mu} \tilde{X}_{3,\nu} + X_{\mu} X_{\nu}^{\dagger} \left(\partial^{\mu} \tilde{X}_{3}^{\nu} - \partial^{\nu} \tilde{X}_{3}^{\mu} \right) \right]$$

$$-ig_{X} \sin \theta_{X}^{\prime} \left[\left(\partial^{\mu} X^{\nu} - \partial^{\nu} X^{\mu} \right) X_{\mu}^{\dagger} \tilde{Z}_{\nu}^{\prime} - \left(\partial^{\mu} X^{\nu\dagger} - \partial^{\nu} X^{\mu\dagger} \right) X_{\mu} \tilde{Z}_{\nu}^{\prime} + X_{\mu} X_{\nu}^{\dagger} \left(\partial^{\mu} \tilde{Z}^{\prime\nu} - \partial^{\nu} \tilde{Z}^{\prime\mu} \right) \right]$$

$$-e\varepsilon \cos(\theta_{X}^{\prime}) \tilde{Z}_{\mu}^{\prime} \bar{f} \gamma^{\mu} f + e\varepsilon \sin(\theta_{X}^{\prime}) \tilde{X}_{3\mu} \bar{f} \gamma^{\mu} f$$

$$(1)$$

- Dark spontaneous symmetry breaking by the VEVs of dark Higgs fields
- Dark Higgs Sector
 - Singlet scalar S
 - *H*_X
 - Kinetic mixing between Z' and hypercharge gauge bosons

Figure 1: Feynman diagrams for $X_+X_+X_- \to X_+\tilde{X}_3$.

Relic Targets of DM Models

Calculating Dark Matter Abundance The Boltzmann Equation

$$\dot{n} + 3Hn = R$$
Universe's Expansion Particle Physics

- n: number density
- H: Hubble Rate (Universe's Expansion)
- R: Interaction Rate Density (# interactions per time and volume)
 - Includes all annihilations and productions
- More convenient to define Y and x

$$Y \equiv \frac{n}{s}, x \equiv \frac{m}{T}$$

• s: entropy density

Ways of Producing Dark Matter

Γ: Interaction Rate (# interactions per time)

H: Hubble Rate (universe's expansion rate)

- Freeze-In
 - Γ < H (decoupled)
 - small interaction rates
 - never thermalizes with bath
- Freeze-Out
 - Γ > H (coupled)
 - large interaction rates
 - thermalizes with bath

This work!

→ Increasing Coupling

Confidence Intervals

- x% CL: If experiment is repeated many times, the intervals include the true parameter x% of the time
- Counting experiment, take Poisson distribution: $f(n; \nu) = \frac{\nu''}{n!} e^{-\nu}$
- Uncertainty on number of background events
 - Neutrino flux, NCE cross section model $(\sigma_{\nu N \to \nu N})$, detector response
 - Nuisance parameters introduced

Experiments

Light Dark Matter eXperiment (LDMX)

- Future fixed target missing momentum exp
 - 2025: LESA delivers beam to LDMX allowing 4×10^{14} EOT
 - 2027: 10¹⁶ EOT
- e^- incident on a thin tungsten target
- Charged particle tracker and calorimeters to measure DM signature
 - Recoil electron pT accompanied by absence of other particle activity

Electron Beam Dumps

NA64

arXiv:1710.00971

- 100 GeV electron beam incident on a lead target
- Event: single electron produced and missing energy

E137

arXiv:1406.2698

- DM produced from electron-target collisions
- 20 GeV beam incident on a set of aluminum plates interlaced with cooling water.
- Downstream detector

Proton Beam Dumps

arXiv:1107.4580

DM scatterings mimic neutrino scatterings! (Neutral current-like scatterings)

LSND

arXiv:hep-ex/0101039

- pions produced by impacting an 800 MeV proton beam onto a water or metal target
- $\pi^0 \rightarrow A' \gamma, A' \rightarrow XX$

Mini-Boone arXiv:1807.06137

- Designed to study short-baseline neutrino oscillations
 - 8 GeV proton beam incident on a steel target
- Peak ~ 800 MeV (ρ mass)

FIG. 2. DM production channels relevant for this search with an 8 GeV proton beam incident on a steel target.

Monophoton Searches $e^+e^- \rightarrow \gamma A', A' \rightarrow XX$

Search for single photon events in e^+e^- collision data

arXiv:1702.03327

- BABAR detector at PEP-II B-factory
- Large missing energy/momentum
- Exclusions for $m_{A'} \leq 8 \text{ GeV}$

Belle-II

arXiv:1808.10567

- Experiment operated at SuperKEKB
- First data taken in 2019, more to come..
 - 7 GeV electrons with 4 GeV positrons

Hadronic Resonances

- If DM freezes-out after the QCD phase transition (~150 MeV), DM annihilates to hadronic final states rather than to quarks.
 - Must consider for $m_X \lesssim 3 \, GeV$

$$\sigma v_{XX \to A' \to \text{hadrons}} \approx R(s) \sigma v_{XX \to A' \to \mu^- \mu^+}$$

$$R(s) \equiv \sigma_{e^+ e^- \to \text{hadrons}} / \sigma_{e^+ e^- \to \mu^+ \mu^-}$$