

Impact of Tl dopant concentration on the Quenching factors in NaI(Tl) crystals

Rituparna Maji on behalf of the <u>COSINUS</u> collaboration TU Wien and HEPHY, Vienna, Austria | rituparna.maji@oeaw.ac.at

NaI-based experiments in the field

- Single channel readout
- room temperature scintillators
- detects light using Nal(TI)
 - DAMA
 - ANAIS
 - COSINE
 - PICOLON
 - SABRE

- Dual channel readout
- cryogenic calorimeter
- detects light+heat using Nal

See contributions by

- <u>Talk by V.Zema [30 Aug,</u> 14:00]
- <u>Talk by M. Bharadwaj [29</u> Aug, 14:45]
- Poster by M. Stukel
- Poster by M. Hughes

• Nuclear recoil produce less amount of scintillation (L_{nr}) light than electromagnetic interaction (L_{ee}) of the same energy within the same target material

$$ullet$$
 Quenching Factor: $QF(E)=rac{L_{nr}(E)}{L_{ee}(E)}$

NaI-based experiments in the field

COSINUS

- Single channel readout
- room temperature scintillators
- detects light using Nal(TI)

Incapable of in-situ measurement of QF

- DAMA
- ANAIS
- COSINE
- PICOLON
- SABRE

- Dual channel readout
- cryogenic calorimeter
- detects light+heat using Nal

Capable of in-situ measurement of QF in cryogenic temperature

See contributions by

- <u>Talk by V.Zema [30 Aug,</u> 14:00]
- <u>Talk by M. Bharadwaj [29</u> <u>Aug. 14:45]</u>
- Poster by M. Stukel
- Poster by M. Hughes

Why is QF important?

- For scintillation-only experiments crystals are calibrated with electron/gamma sources
- Energy of nuclear recoil events gets quenched and hence needs to be re-scaled using QF
- Precise QF measurement is crucial to get the correct nuclear recoil energy in scintillation-only experiments
- Prior investigations have shown that variable QF, linked to energy, has the potential to influence modulation signals [1]

[1] PhysRevC.92.015807

Motivation and goals

- DAMA reports(1996) a **constant QF** for different nuclear recoil energy:
 - QF of Na: 0.3, QF of I: 0.09
- Quenching factor mystery in the field: room temperature QF measurement of NaI(TI) do not agree, especially below 30 keV_{nr}
 - Goal 1: systematic study of QF in low energy range
- Tl dopant concentrations (added for room temperature scintillation in Nal) in tested crystals often not precisely known
 - Goal 2: systematic study of QF with different Tl dopant concentration
- Goal 3: Compare results with the cryogenic measurement @COSINUS

D. Cintas et al 2021 J. Phys.: Conf. Ser. 2156 012065

QF measurement setup

- Measurement done at TUNL, USA
- Special thanks to **P. Barbeau**, **S. Hedges et. al** for their **invaluable contribution and support :)**
- Collimated quasi-monoenergetic neutron beam(~1500 keV) induces nuclear recoils in NaI(TI) crystals
- 14 backing detectors (BDs) [liquid scintillators coupled with PMTs] are placed at a distance of 1-1.5 m from NaI covering 7-40 degrees of angles
- Coincidence window between the NaI(TI) and any backing detector for triggering neutron-induced nuclear recoil events

Crystals produced by

- 5 ultra-pure Nal crystals each with unique TI dopant concentration
- Crystals were produced by SICCAS, China using Astro-Grade powder [arXiv: 1909.11692]
- Small cylindrical crystals (diameter and height of 1 inch) to reduce multiple scattering
- As Nal is hygroscopic, each crystal is sealed in Al casing of ~1.5mm thickness
- ICP-MS studies @LNGS, Italy showed

Potassium: 10 ppb

Uranium: 0.2 ppb

Thorium: **0.1** ppb

- o Radioactive contamination comparable or better than the crystals used at DAMA
- 28-36 hours exposure on each crystal, placed on a rotating stand to ensure uniform neutron flux to reduce ion channeling effect
- A PMT (H11934-200) attached to the Nal crystal

Simulation goals

COSINUS

Geant4 simulation using ImpCRESST(EPJC:(2019)79:881)

Goal 1: Set up the experiment

To determine the optimal angular range for BD placement, ensuring sufficient neutron flux and an adequate number of events reaching each backing detector

Goal 2: Find true nuclear recoil energy

To simulate the true nuclear recoil energy → to be compared against the measured electron equivalent energy to calculate QF

Goal 3: Compare measured calibration spectra

To simulate energy deposition on Nal using different calibration sources → compare simulated spectra to the fitted (measured) calibration spectra

Calibration and Resolution

Measured calibration spectra from the PMT attached to NaI

- Gaussian fit to extract peaks and widths
- Fitted spectra compared to simulation

COSINUS

Simulated nuclear recoil energy

Energy deposition in a BD depending on the neutron scattering angle:

$$E_{nr}=2E_{n}rac{m_{n}^{2}}{(m_{n}+m_{N})^{2}}\left(rac{m_{N}}{m_{n}}+sin^{2} heta-cos heta\sqrt{(rac{m_{N}}{m_{n}})^{2}-sin^{2} heta}
ight)$$

 m_n , m_N : mass of the neutron and target nuclide respectively

Resolution of simulated nuclear recoil spectra

Resolution as a function of energy of simulated peaks fitted using $\sqrt{ax}+bx$

QF estimation (Na recoils)

QF(Na): preliminary results

 An energy-dependent trend is observed in QF (Na recoils): QF decreases as nuclear recoil energy declines

Comparison with cryogenic measurement

- An energy-dependent trend is apparent in QF (Na recoils): QF decreases as nuclear recoil energy declines
- In-situ cryogenic measurement with a prototype NaI(TI) remo-TES detector demonstrates a similar energy-dependent behaviour of QF [<u>arXiv: 2307.11139</u>]

Comparison of QF(Na) with other measurements

This measurement aligns with other QF measurements that report energy-dependent behavior of QF

Tl dopant concentration dependence of QF(Na)

Preliminary indication of TI dopant concentration dependence on QF

Effect of different calibration and resolution on QF(Na)

Different calibration and resolution methods (shown in <u>slide 9</u>) influences the QF behavior

Conclusions

- Five Nal crystals, each with unique Tl dopant concentration measured at the neutron calibration facility at Triangle Universities National Laboratory (TUNL), USA
- QF (Na recoils) decreases at lower nuclear recoil energy → emphasizing the need for energy-dependent calibration
- Lower TI dopant concentration linked to reduced QF (Na recoils), indicating TI dopant's role in crystal response
- Different calibration and resolution methods demonstrated significant influence on QF behavior, highlighting the necessity of precise methodologies while comparing dark matter results from different experiments
- A publication is currently under preparation
- QF (I recoils) unattainable in the current set up due to extremely low recoil energies

Thank you for your attention

Accelerator facility at TUNL, USA

- Pulsed beam of protons interacts with the LiF target generating pulsed beam of quasi mono-energetic (~1500 keV) neutron
- A beam pulse monitor (BPM) records the time of neutron production (interaction of proton with LiF)

Additional details of the QF measurement setup

- A backing detector at 0 degree to measure time of flight (TOF) to monitor the spread of neutron energy
- A beam pulse monitor (BPM) records the time of neutron production (interaction of proton with LiF)

Beam parameters:

Proton beam energy: 1495 keV

Proton pulsing time: 400 ns

Pulse width: 2ns FWHM

Proton beam current: 900nA

LiF target thickness: 1434 nm

Simulated geometry and n-source

The following things were simulated:

- Nal(TI) crystal and complete housing
 - Nal cylindrical crystal
 - Al Casing
- Backing detector(s)
 - Liquid scintillator: cylindrical EJ-309
 - Al Casing
 - Lead cap (cylinder + square plate)
- Collimator made of BPE and HDPE
- Ba 133, Am 341, Cs 137 source for calibration
- Quasi-monoenergetic neutron source (~1500 keV)

Geant4 simulation to setup the experiment

Finding suitable angular range to place the BDs:

Based on the simulation the BDs are placed between -40 to 40 degrees

Geant4 simulation to setup the experiment

Elastic total

Ensuring enough neutro reaching each BD:

Simulation of the calibration spectra

Ba-133

Am-241

Cs-137

COSINUS

PMT energy estimation

• ACE (<u>arXiv:2102.02833</u>) was used to estimate PMT charge

COSINUS

Neutron selection

- BPM to BD time-of-flight and pulse shape parameter (PSD) are used to select neutrons for further analysis
- Also used the digitizer pileup flag to remove double events

by shifting the BPM parameter

Systematic uncertainty due to beam shift

COSINUS

- A beam shift could explain the systematic sawtooth pattern observed in the QF results
- 2. Solution (approach):
 - Take rolling average of two points to find the optimum shift which best explains the sawtooth pattern
 - b. If we change the angle by 0.7 degrees and recalculate the nuclear recoil energies, then the sawtooth pattern reduces
- 3. Remarks: While this method reduces the sawtooth pattern effectively, it makes it challenging to compare with other results

