

Gravitational-Wave Observational Results and Prospects

Patrick Brady,
University of Wisconsin-Milwaukee

TAUP2023 30 August 2023

https://dcc.ligo.org/G2301194

Gravitational-wave spectrum

International Gravitational-Wave Observatory Network (IGWN)

Compact object mergers

Pairs of stellar-mass black holes, neutron stars, or a stellar-mass black hole and neutron star

$$h_{ij} \sim \frac{4GM}{c^4} \frac{v^2}{r}$$

Detections

- GW150914
 - First astrophysical source
 - Binary black holes exist
- GW170817
 - Binary neutron star mergers are gamma-ray burst progenitors
- GW190521
 - Black holes exist in pair instability mass gap
- GW190814
 - Compact objects exist with masses between 2-5 Msun

Gravitational-Wave Transient Catalog

From one to many: measuring populations

Merger rate density as a function of primary mass using 3 non-parametric models compared to the power-law+peak (pp) model.

Mergers involving neutron stars

- GW170817 & GW190425
 - Binary neutron star (BNS) merger waves
- GW170817 & GRB 170817A
 - Fractional difference in speed of gravity and the speed of light is between -3 x 10⁻¹⁵ and 7 x 10⁻¹⁶
- GW170817 & AT 2017gfo
 - Binary neutron star mergers produce kilonova explosions that generate heavy elements

B. P. Abbott et al 2017 ApJL 848 L13

Search for subsolar-mass binaries

- Search for compact binary mergers with at least one object of mass 0.2 - 1 Msun.
- No detections.
- Example constraints on fraction of dark matter in primordial black holes from an isotropic distribution of equal-mass binaries.

LIGO-Virgo Collaboration Phys. Rev. Lett. 129, 061104

Many other observational results

Limits on waves from pulsars Phys. Rev. D 106, 102008 (2022)

Stochastic background limits Phys. Rev. D 105, 122002 (2022)

Hubble constant measurements Astrophys. J. 949, 76 (2023)

And much more!

Back to observing!

- O4 started 24 May 2023: 20 months with up to 2 months commissioning
 - Virgo delayed due to damage to optics; KAGRA renewed commissioning after 1 month.
- Binary detection rates
 - o 03 ~ 1 / 5 days
 - O4 ~ 1 / (2.8 days)
- Improved public alerts
 - Localization
 - Classification
 - Latency
 - Early-warning alerts
 - Low-significance alerts
- Improved sensitivity
 - Stay tuned for new results!

O5 Observing Run

Current thinking

- Start is paced by upgrades after O4: 1.5-2 years gap.
- Intersperse commissioning and observations

Binary detection rates

- O3 ~ 1 / 5 days
- O4 ~ 1 / (2-3) days
- O5 ~ 3 / day

Other science

- Improved SNR
- o New sources?

https://observing.docs.ligo.org/plan/

LIGO Early 2030s

- LIGO Aundha Observatory (LAO) is to be constructed in India and operated as part of the LIGO Observatories in the 2030s.
- A#: possible targeted improvements to the LIGO detectors
 - Achieve close to a factor of 2 amplitude sensitivity improvement with larger test masses, better seismic isolation, improved mirror coatings, higher laser power, better squeezing ...
 - Begin observing at the end of 2031 and observe for several years.
 - A# an engine for observational science and a pathfinder for next-generation technologies.
 - A network including LIGO A# detectors would be a cornerstone for multimessenger discovery.
- Virgo has scoped similar improvements, called VirgoNEXT, with similar timetable. KAGRA is focused on reaching its current target.

PULSAP LIMING

Recent Pulsar Timing Observations

Illustration Credit Olena Shmahalo for NANOGrav

Recent Pulsar Timing Observations

Hellings-Downs interpulsar correlations from a gravitational-wave background.

- Bayesian analysis ~ 3 sigma
- Frequentist analysis ~ 3.5 4 sigma

Possibly background from supermassive black hole binaries.

- NANOGrav G. Agazie et al 2023 ApJL 951 L8
- PPTA D. J. Reardon et al 2023 ApJL 951 L6
- EPTA and InPTA J. Antoniadis et al. A&A, to appear
- CPTA H. Xu et al 2023 Res. Astron. Astrophys. 23 075024

Thank you!