Cosmic inflation and the primordial universe

Gonzalo A. Palma FCFM, U. de Chile

TAUP23, Vienna
August 28, 2023

of Primordial fluctuations

CMB and LSS tell us that the Statistics of $\delta_{\mathbf{k}}\left(t_{\mathrm{ini}}\right)$ is:

* Adiabatic

$$
\delta_{\mathbf{k}}\left(t_{\mathrm{ini}}\right)
$$

* Gaussian
* Almost scale independent

$$
\overline{t=0}
$$

Primordial fluctuations

* Adiabaticity

Every inhomogeneity is determined by a single fluctuation

$$
\begin{aligned}
& \delta_{\mathbf{k}}^{\gamma}\left(t_{\text {ini }}\right) \propto \mathcal{R}_{\mathbf{k}} \\
& \delta_{\mathbf{k}}^{\nu}\left(t_{\text {ini }}\right) \propto \mathcal{R}_{\mathbf{k}} \\
& \delta_{\mathbf{k}}^{\mathrm{Bar}}\left(t_{\text {ini }}\right) \propto \mathcal{R}_{\mathbf{k}} \\
& \delta_{\mathbf{k}}^{\mathrm{DM}}\left(t_{\text {ini }}\right) \propto \mathcal{R}_{\mathbf{k}} \\
& d s^{2}=-d t^{2}+a^{2}(t) e^{2 \mathcal{R}(t, \mathbf{x})} d \mathbf{x}^{2}
\end{aligned}
$$

Primordial fluctuations

* Gaussianity $\rho[\mathcal{R}] \propto e^{-\frac{1}{2} \int_{k} \frac{\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{P(k)}}$

Primordial fluctuations

* Gaussianity $\rho[\mathcal{R}] \propto e^{-\frac{1}{2} \int_{k} \frac{\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{P(k)}}$

Primordial fluctuations

* Almost scale independent

$$
P_{\mathcal{R}}(k)=\frac{2 \pi^{2}}{k^{3}} \Delta_{\mathcal{R}}(k) \quad \Delta_{\mathcal{R}}(k)=A\left(\frac{k}{k_{*}}\right)^{n_{s}-1}
$$

$n_{s} \simeq 0.96$

Planck collaboration (2018)

Non-Gaussianity?

$$
\rho[\mathcal{R}] \propto e^{-\frac{1}{2} \int_{k} \frac{\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{P(k)}}
$$

fon-Gaussianity?

Non-Gaussianity?

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}}\right\rangle=\int \mathcal{D R} \rho[\mathcal{R}] \times \mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{\mathbf{2}}}
$$

Non-Gaussianity?

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}}\right\rangle=\int \mathcal{D R} \rho[\mathcal{R}] \times \mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}}
$$

Non-Gaussianity?

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle=\int \mathcal{D} \mathcal{R} \rho[\mathcal{R}] \times \mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}
$$

Non-Gaussianity?

The bispectrum parametrizes the simplest deviation to NG

Non-Gaussianity?

The bispectrum parametrizes the simplest deviation to NG

Non-Gaussianity?

The bispectrum parametrizes the simplest deviation to NG

$\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}}\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)$

Non-Gaussianity?

In the absence of a specific theory, a common parametrization for the bispectrum is the f_{NL} parameter

$$
\mathcal{R}(\mathbf{x})=\mathcal{R}_{G}(\mathbf{x})+\frac{3}{5} f_{\mathrm{NL}}^{\mathrm{loc}} \mathcal{R}_{G}^{2}(\mathbf{x})
$$

In the absence of a specific theory, a common parametrization for the bispectrum is the f_{NL} parameter

$$
\mathcal{R}(\mathbf{x})=\mathcal{R}_{G}(\mathbf{x})+\frac{3}{5} f_{\mathrm{NL}}^{\mathrm{loc}} \mathcal{R}_{G}^{2}(\mathbf{x})
$$

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) \propto f_{\mathrm{NL}}^{\mathrm{loc}} \times\left(P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)+P\left(\mathbf{k}_{2}\right) P\left(\mathbf{k}_{3}\right)+P\left(\mathbf{k}_{3}\right) P\left(\mathbf{k}_{1}\right)\right)
$$

In the absence of a specific theory, a common parametrization for the bispectrum is the f_{NL} parameter

$$
\mathcal{R}(\mathbf{x})=\mathcal{R}_{G}(\mathbf{x})+\frac{3}{5} f_{\mathrm{NL}}^{\mathrm{loc}} \mathcal{R}_{G}^{2}(\mathbf{x})
$$

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) \propto f_{\mathrm{NL}}^{\mathrm{loc}} \times\left(P\left(\mathbf{k}_{1}\right) P\left(\mathbf{k}_{2}\right)+P\left(\mathbf{k}_{2}\right) P\left(\mathbf{k}_{3}\right)+P\left(\mathbf{k}_{3}\right) P\left(\mathbf{k}_{1}\right)\right)
$$

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\frac{18}{5} A^{2} \sum_{\text {type }} f_{\mathrm{NL}}^{\mathrm{type}} S_{\mathrm{type}}\left(k_{1}, k_{2}, k_{3}\right)
$$

Non-Gaussianity?

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\frac{18}{5} A^{2} \sum_{\text {type }} f_{\mathrm{NL}}^{\mathrm{type}} S_{\text {type }}\left(k_{1}, k_{2}, k_{3}\right)
$$

Non-Gaussianity?

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\frac{18}{5} A^{2} \sum_{\text {type }} f_{\mathrm{NL}}^{\mathrm{type}} S_{\mathrm{type}}\left(k_{1}, k_{2}, k_{3}\right)
$$

of Inflation

of Inflation

of Inflation

of Inflation

$$
d s^{2}=-d t^{2}+a^{2}(t) e^{2 \mathcal{R}(t, \mathbf{x})} d \mathbf{x}^{2}
$$

Inflation

We can now write a theory for $\mathcal{R}(\mathbf{k})$

Inflation

We can now write a theory for $\mathcal{R}(\mathbf{k})$

$$
S=\int d^{4} x a^{3} \epsilon\left[\dot{\mathcal{R}}^{2}-\frac{1}{a^{2}}(\nabla \mathcal{R})^{2}+\mathcal{O}\left(\mathcal{R}^{3}\right)+\mathcal{O}\left(\mathcal{R}^{4}\right)+\cdots\right]
$$

There are three favorite ways to compute observables from this theory

Inflation

We can now write a theory for $\mathcal{R}(\mathbf{k})$

$$
S=\int d^{4} x a^{3} \epsilon\left[\dot{\mathcal{R}}^{2}-\frac{1}{a^{2}}(\nabla \mathcal{R})^{2}+\mathcal{O}\left(\mathcal{R}^{3}\right)+\mathcal{O}\left(\mathcal{R}^{4}\right)+\cdots\right]
$$

There are three favorite ways to compute observables from this theory
(1) Hamiltonian in-in formalism:

$$
\begin{aligned}
H(t) & =H^{(2)}(t)+H^{(3)}(t)+\cdots \\
U(t) & =\mathcal{T} \exp \left\{-i \int_{-\infty}^{t} d t^{\prime} H_{I}\left(t^{\prime}\right)\right\}
\end{aligned}
$$

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}}(t) \cdots \mathcal{R}_{\mathbf{k}_{N}}(t)\right\rangle=\langle 0| U^{\dagger}(t) \mathcal{R}_{\mathbf{k}_{1}}^{I}(t) \cdots \mathcal{R}_{\mathbf{k}_{N}}^{I}(t) U(t)|0\rangle
$$

Inflation

We can now write a theory for $\mathcal{R}(\mathbf{k})$

$$
S=\int d^{4} x a^{3} \epsilon\left[\dot{\mathcal{R}}^{2}-\frac{1}{a^{2}}(\nabla \mathcal{R})^{2}+\mathcal{O}\left(\mathcal{R}^{3}\right)+\mathcal{O}\left(\mathcal{R}^{4}\right)+\cdots\right]
$$

There are three favorite ways to compute observables from this theory
(2) Wavefunction of the Universe:

$$
\begin{aligned}
& \Psi[\mathcal{R}(\mathbf{x})]=\int_{\mathcal{R}_{B D}}^{\mathcal{R}(\mathbf{x})} D \mathcal{R} e^{i S[\mathcal{R}] / \hbar} \quad \rho[\mathcal{R}(\mathbf{x})]=|\Psi[\mathcal{R}(\mathbf{x})]|^{2} \\
& \left\langle\mathcal{R}_{\mathbf{k}_{1}}(t) \cdots \mathcal{R}_{\mathbf{k}_{N}}(t)\right\rangle=\int D \mathcal{R}(\mathbf{x}) \rho[\mathcal{R}(\mathbf{x})] R_{\mathbf{k}_{1}}(t) \cdots \mathcal{R}_{\mathbf{k}_{N}}(t)
\end{aligned}
$$

Inflation

We can now write a theory for $\mathcal{R}(\mathbf{k})$

$$
S=\int d^{4} x a^{3} \epsilon\left[\dot{\mathcal{R}}^{2}-\frac{1}{a^{2}}(\nabla \mathcal{R})^{2}+\mathcal{O}\left(\mathcal{R}^{3}\right)+\mathcal{O}\left(\mathcal{R}^{4}\right)+\cdots\right]
$$

There are three favorite ways to compute observables from this theory
(3) Schwinger-Keldysh in-in formalism:
$Z\left[J_{+}, J_{-}\right]=\int_{\mathcal{R}_{+}\left(t_{\text {end }}\right)=\mathcal{R}_{-}\left(t_{\text {end }}\right)} \begin{gathered}D \mathcal{R}_{+} D \mathcal{R}_{-}\end{gathered} e^{i S\left[\mathcal{R}_{+}\right]-i S\left[\mathcal{R}_{+}\right]+i \int_{x} R_{+} J_{+}-i \int_{x} R_{-} J_{-}}$

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{N}}\right\rangle=\frac{\delta}{\delta J_{+}\left(\mathbf{k}_{1}\right)} \cdots \frac{\delta}{\delta J_{+}\left(\mathbf{k}_{N}\right)} Z\left[J_{+}, J_{-}\right]
$$

Inflation

These methods offer a diagramatic procedure to compute n-points

Inflation

These methods offer a diagramatic procedure to compute n-points

Power spectrum

$$
\begin{aligned}
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}}\right\rangle & =\ldots \ldots \ldots \ldots \\
& =(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \frac{2 \pi^{2}}{k^{3}} \mathcal{P}_{\mathcal{R}}(k)
\end{aligned}
$$

Inflation

These methods offer a diagramatic procedure to compute n-points

Bi-spectrum

$$
\begin{aligned}
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}}\right\rangle & = \\
& =(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)
\end{aligned}
$$

Inflation

These methods offer a diagramatic procedure to compute n-points

$$
\begin{aligned}
& \text { Tri-spectrum } \\
& \left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle= \\
& =(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4}\right) \tau\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{3}\right)
\end{aligned}
$$

Inflation

Single-field slow-roll inflation predicts small amounts of NG:
$f_{\mathrm{NL}}^{\text {type }} \simeq \mathcal{O}(\epsilon, \eta)$
Maldacena (2002)

$$
f_{\mathrm{NL}}^{\mathrm{loc}}=0
$$

Tanaka \& Urakawa (2011)
Pajer, Schmidt \& Zaldarriaga (2013)

Inflation

Single-field slow-roll inflation predicts small amounts of NG:

$$
\begin{aligned}
& f_{\mathrm{NL}}^{\mathrm{type}} \simeq \mathcal{O}(\epsilon, \eta) \\
& \text { Maldacena }
\end{aligned}
$$

$$
f_{\mathrm{NL}}^{\mathrm{loc}}=0
$$

Tanaka \& Urakawa (2011)
Pajer, Schmidt \& Zaldarriaga (2013)

More general types of single-field inflation can enhance NG:

$$
\begin{gathered}
\mathcal{L}=\epsilon\left(c_{s}^{2} \dot{\mathcal{R}}^{2}-\frac{1}{a^{2}}(\nabla \mathcal{R})^{2}\right)+\left(\frac{1}{c_{s}^{2}}-1\right) \times \mathcal{O}\left(\mathcal{R}^{3}\right)+\cdots \\
f_{\mathrm{NL}}^{\mathrm{equil}} \simeq \mathcal{O}\left(\frac{1}{c_{s}^{2}}-1\right) \quad f_{\mathrm{NL}}^{\mathrm{loc}}=0
\end{gathered}
$$

Chen, Huang, Kachru \& Shiu (2007)

of Multi-field inflation

o Multi-field inflation

of Multi-field inflation

Multi-field inflation

$$
\begin{array}{r}
\mathcal{L}=\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{2}-\frac{\epsilon}{a^{2}}(\nabla \mathcal{R})^{2}+\frac{1}{2} \dot{\psi}^{2}-\frac{1}{a^{2}}(\nabla \psi)^{2} \\
+\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{3}-V(\psi)+\cdots
\end{array}
$$

Multi-field inflation

$$
\begin{aligned}
\mathcal{L}=\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{2} & -\frac{\epsilon}{a^{2}}(\nabla \mathcal{R})^{2}+\frac{1}{2} \dot{\psi}^{2}-\frac{1}{a^{2}}(\nabla \psi)^{2} \\
& +\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{3}-V(\psi)+\cdots
\end{aligned}
$$

Multi-field inflation

$$
\begin{aligned}
\mathcal{L}=\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{2} & -\frac{\epsilon}{a^{2}}(\nabla \mathcal{R})^{2}+\frac{1}{2} \dot{\psi}^{2}-\frac{1}{a^{2}}(\nabla \psi)^{2} \\
& +\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{3}-V(\psi)+\cdots
\end{aligned}
$$

Multi-field inflation

$$
\begin{array}{r}
\mathcal{L}=\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{2}-\frac{\epsilon}{a^{2}}(\nabla \mathcal{R})^{2}+\frac{1}{2} \dot{\psi}^{2}-\frac{1}{a^{2}}(\nabla \psi)^{2} \\
+\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{3}-V(\psi)+\cdots
\end{array}
$$

o Multi-field inflation

$$
V(\psi)=\frac{1}{2} \mu^{2} \psi^{2}+\frac{1}{3} g \psi^{3}+\cdots .
$$

Three-point statistics:
$\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}}\right\rangle=$
Chen \& Wang (2012) see also Assassi et al. (2013)

Multi-field inflation

Three-point statistics:
$\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}}\right\rangle=$
(Quasi-single field)

Chen \& Wang (2012) Noumi, Yamaguchi \& Yokoyama (2013) see also Assassi et al. (2013)
$\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}}\right\rangle=$
(Cosmological colliders)

Noumi, Yamaguchi \& Yokoyama (2013)
Maldacena \& Arkani-Hamed (2016) Chen \& Wang (2016)

Beyond the bispectrum

The perturbative schemes seem to imply a hierarchical reconstruction of the probability distribution function

$$
\rho[\mathcal{R}] \sim \exp \left\{-\frac{\mathcal{R}^{2}}{2 P_{\mathcal{R}}}\left(1+f_{\mathrm{NL}} \mathcal{R}+g_{\mathrm{NL}} \mathcal{R}^{2}+\cdots\right)\right\}
$$

Beyond the bispectrum

The perturbative schemes seem to imply a hierarchical reconstruction of the probability distribution function

$$
\rho[\mathcal{R}] \sim \exp \left\{-\frac{\mathcal{R}^{2}}{2 P_{\mathcal{R}}}\left(1+f_{\mathrm{NL}} \mathcal{R}+g_{\mathrm{NL}} \mathcal{R}^{2}+\cdots\right)\right\}
$$

$$
-\frac{\mathcal{R}^{2}}{2 P_{\mathcal{R}}}+f(\mathcal{R})
$$

Beyond the bispectrum

The perturbative schemes seem to imply a hierarchical reconstruction of the probability distribution function

$$
\rho[\mathcal{R}] \sim \exp \left\{-\frac{\mathcal{R}^{2}}{2 P_{\mathcal{R}}}\left(1+f_{\mathrm{NL}} \mathcal{R}+g_{\mathrm{NL}} \mathcal{R}^{2}+\cdots\right)\right\}
$$

$$
-\frac{\mathcal{R}^{2}}{2 P_{\mathcal{R}}}+f(\mathcal{R})
$$

Beyond the bispectrum

The perturbative schemes seem to imply a hierarchical reconstruction of the probability distribution function

$$
\rho[\mathcal{R}] \sim \exp \left\{-\frac{\mathcal{R}^{2}}{2 P_{\mathcal{R}}}\left(1+f_{\mathrm{NL}} \mathcal{R}+g_{\mathrm{NL}} \mathcal{R}^{2}+\cdots\right)\right\}
$$

Consider a spectator field ψ during inflation with it's own potential $V(\psi)$
(This potential is not driving inflation)
of Beyond the bispectrum

Main idea:

$$
\frac{k^{2}}{a^{2}(t)} \psi^{2}+V(\psi)
$$

Consider a spectator field ψ during inflation with it's own potential $V(\psi)$
(This potential is not driving inflation)

fo Beyond the bispectrum

Main idea:

$$
\frac{k^{2}}{a^{2}(t)} \psi^{2}+V(\psi)
$$

fo Beyond the bispectrum

Main idea:

$$
\frac{k^{2}}{a^{2}(t)} \psi^{2}+V(\psi)
$$

fobeyond the bispectrum

$$
\frac{k^{2}}{a^{2}(t)} \psi^{2}+V(\psi)
$$

\& Beyond the bispectrum

Main idea:

fobeyond the bispectrum

Main idea:

rens.

$$
\frac{k^{2}}{a^{2}(t)} \psi^{2}+V(\psi)
$$

$\rho(\psi)$

\& Beyond the bispectrum

Main idea:

\& Beyond the bispectrum

Main idea:

$\rho(\psi)$

of Beyond the bispectrum

Main idea:

Beyond the bispectrum

$$
\begin{aligned}
& \mathcal{L}=\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{2}-\frac{\epsilon}{a^{2}}(\nabla \mathcal{R})^{2}+\frac{1}{2} \dot{\psi}^{2}-\frac{1}{a^{2}}(\nabla \psi)^{2} \\
& +\epsilon(\dot{\mathcal{R}}-\alpha \psi)^{3}-V(\psi)+\cdots
\end{aligned}
$$

$\rho(\psi)$

Beyond the bispectrum

Beyond the bispectrum

Flauger, Mirbabayi, Senatore \& Silverstein (2016)
$\rho(\psi)$ Chen, GAP, Riquelme, Scheihing Hitschfeld \& Sypsas (2018)

Beyond the bispectrum

The previous idea can be examined non-perturbatively. On long wavelengths a spectator field satisfies the Fokker-Planck equation:

$$
\frac{\partial \rho}{\partial t}=\frac{1}{3 H} \frac{\partial}{\partial \psi}\left(V^{\prime}(\psi) \rho\right)+\frac{H^{3}}{8 \pi^{2}} \frac{\partial^{2} \rho}{\partial \psi^{2}}
$$

Beyond the bispectrum

The previous idea can be examined non-perturbatively. On long wavelengths a spectator field satisfies the Fokker-Planck equation:

$$
\frac{\partial \rho}{\partial t}=\frac{1}{3 H} \frac{\partial}{\partial \psi}\left(V^{\prime}(\psi) \rho\right)+\frac{H^{3}}{8 \pi^{2}} \frac{\partial^{2} \rho}{\partial \psi^{2}}
$$

Equilibrium solution:

$$
\rho(\psi) \propto e^{-\frac{1}{H^{4}} V(\psi)}
$$

Beyond the bispectrum

The previous idea can be examined non-perturbatively. On long wavelengths a spectator field satisfies the Fokker-Planck equation:

$$
\frac{\partial \rho}{\partial t}=\frac{1}{3 H} \frac{\partial}{\partial \psi}\left(V^{\prime}(\psi) \rho\right)+\frac{H^{3}}{8 \pi^{2}} \frac{\partial^{2} \rho}{\partial \psi^{2}} \quad+\mathcal{O}\left(V^{2}\right)
$$

Equilibrium solution:

$$
\rho(\psi) \propto e^{-\frac{1}{H^{4}} V(\psi)}
$$

$\rho(\psi) \propto e^{-\frac{1}{H^{4}} V(\psi)+\mathcal{O}\left(V^{2}\right)+\mathcal{O}\left(V^{3}\right)+\cdots}$
Gorbenko \& Senatore (2019)

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

$$
V(\psi)=\sum_{n} \frac{\lambda_{n}}{n!} \psi^{n}
$$

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

$$
V(\psi)=\sum_{n} \frac{\lambda_{n}}{n!} \psi^{n}
$$

λ_{1}

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

$$
V(\psi)=\sum_{n} \frac{\lambda_{n}}{n!} \psi^{n}
$$

One can compute every leading n-point function

$$
\left\langle\psi\left(\mathbf{k}_{1}\right) \cdots \psi\left(\mathbf{k}_{n}\right)\right\rangle \sim \lambda_{n}+\mathcal{O}\left(\lambda^{2}\right)
$$

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

$$
V(\psi)=\sum_{n} \frac{\lambda_{n}}{n!} \psi^{n}
$$

One can compute every leading n-point function

$$
\begin{gathered}
\left\langle\psi\left(\mathbf{k}_{1}\right) \cdots \psi\left(\mathbf{k}_{n}\right)\right\rangle \sim \lambda_{n}+\mathcal{O}\left(\lambda^{2}\right) \\
\rho(\psi)=\frac{e^{-\frac{1}{2} \frac{\psi^{2}}{\sigma^{2}}}}{\sqrt{2 \pi} \sigma} \sum_{N=0}^{\infty} \frac{1}{N!} \sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{N}=0}^{\infty} \frac{1}{n_{1}!} \cdots \frac{1}{n_{N}!} \frac{\left\langle\psi^{n_{1}}\right\rangle_{c}}{\sigma^{n_{1}}} \cdots \frac{\left\langle\psi^{n_{N}}\right\rangle_{c}}{\sigma^{n_{N}}} \operatorname{He}_{n_{1}+\cdots+n_{N}}(\psi / \sigma)
\end{gathered}
$$

Beyond the bispectrum

Another approach consists of directly reconstructing $\rho(\mathcal{R})$ out of n-point functions

$$
V(\psi)=\sum_{n} \frac{\lambda_{n}}{n!} \psi^{n}
$$

One can compute every leading n-point function

$$
\begin{gathered}
\left\langle\psi\left(\mathbf{k}_{1}\right) \cdots \psi\left(\mathbf{k}_{n}\right)\right\rangle \sim \lambda_{n}+\mathcal{O}\left(\lambda^{2}\right) \\
\rho(\psi)=\frac{e^{-\frac{1}{2} \psi^{2}}}{\sqrt{2 \pi} \sigma} \sum_{N=0}^{\infty} \frac{1}{N!} \sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{N}=0}^{\infty} \frac{1}{n_{1}!} \cdots \frac{1}{n_{N}!} \frac{\left\langle\psi^{n_{1}}\right\rangle_{c}}{\sigma^{n_{1}}} \cdots \frac{\left\langle\psi^{n_{N}}\right\rangle_{c}}{\sigma^{n_{N}}} \mathrm{He}_{n_{1}+\cdots+n_{N}(\psi / \sigma)} \\
\rho(\psi)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{\psi^{2}}{\sigma^{2}}+\log a\left(\sigma^{2} V^{\prime \prime}-\psi V^{\prime}\right)+\cdots}
\end{gathered}
$$

Beyond the bispectrum

For example, the reconstructed PDF from CMB data is

Beyond the bispectrum

$a_{n} \equiv \int d \Theta \rho(\Theta) \mathrm{He}_{n}\left(\Theta / \sigma_{\Theta}\right)$

ofeyond the bispectrum

$a_{n} \equiv \int d \Theta \rho(\Theta) \mathrm{He}_{n}\left(\Theta / \sigma_{\Theta}\right)$

fobeyond the bispectrum

\& Beyond the bispectrum

Beyond the bispectrum

NG tails might be possible in single field inflation:

$$
\mathcal{L}=\epsilon\left(\dot{\mathcal{R}}^{2}-(\nabla \mathcal{R})^{2}+\frac{\lambda}{4!H^{2}} \dot{\mathcal{R}}^{4}\right)
$$

(a)

(b)

(c)

Celoria, Creminelli, Tambalo \& Yingcharoenrat (2021)

Beyond the bispectrum

NG tails might be possible in single field inflation:

$$
\mathcal{L}=\epsilon\left(\dot{\mathcal{R}}^{2}-(\nabla \mathcal{R})^{2}+\frac{\lambda}{4!H^{2}} \dot{\mathcal{R}}^{4}\right)
$$

$$
\rho(\mathcal{R}) \sim \exp \left[-\frac{\mathcal{R}^{3 / 2}}{\lambda^{1 / 4}}\right]
$$

(c)

Celoria, Creminelli, Tambalo \& Yingcharoenrat (2021)

Conclusions

- The primordial statistics may deviate significantly from Gaussianity in a way not parametrized by the bispectrum
- These effects could escape conventional data analysis
- New perturbative and nonperturbative techniques are necessary to uncover this type of NG

Conclusions

- The nrimordial statistics mav deyiate sid
no
-Th Thanks! co
- Ne ted this type of NG

