

Oscura: Dark Matter search with 10 kg of skipper-CCDs

Nate Saffold on behalf of the Oscura collaboration

Fermilab

TAUP 2023

August 28, 2023

DM direct detection with CCDs

 $m_x \sim GeV \rightarrow energy transfer is a few keV$

Searching for sub-GeV DM motivates other detection channels

Scientific Charge-Coupled Devices (CCDs): structure and operation

- CCDs are an array of Metal-Oxide-Semiconductor capacitors
- Ionizing radiation interacting in the substrate produces e-h pairs (in Si, 1 e-h pair corresponds to ~3.8 eV)
- Charge is collected near the surface, transferred varying the potential wells until reaching the readout stage
- Conventional CCDs are limited to noise of ~2e⁻¹

Skipper-CCDs for direct DM search

Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):

- Energy threshold of Si bandgap (~1.1 eV)
- Low dark current (~10⁻⁴ e⁻/pix/day)
- Sub-electron (~0.1e⁻) readout noise

Skipper amplifier makes repetitive, non-destructive measurement of the pixel charge, reducing noise to sub-electron levels

Skipper-CCDs for direct DM search

Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):

- Energy threshold of Si bandgap (~1.1 eV)
- Low dark current (~10⁻⁴ e⁻/pix/day)
- Sub-electron (~0.1e⁻) readout noise

Low threshold enables low-mass searches:

- Electron scattering of 1-1000 MeV DM
- Nuclear scattering of 1-1000 MeV DM via Migdal effect
- Absorption of 1-1000 eV DM
- Scattering of milli-charged particles
- Etc...

Skipper-CCDs for direct DM search

World best limits for sub-GeV DM candidates with this technology — Ongoing program

Experiment	Mass [kg]	#CCDs	Radiation bkgd [dru]	Instrumental bkgd [e-/pix/day]	Commissioning
SENSEI @ MINOS	~0.002	1	3400	1.6 x 10 ⁻⁴	late-2019
DAMIC @ SNOLAB	~0.02	2	5	~3 x 10 ⁻³	late-2021
DAMIC-M LBC	~0.02	2	~10	3 x 10 ⁻³	late-2021
SENSEI-100	~0.1	50	10 (goal)		mid-2022
DAMIC-M	~1	200	0.1 (goal)		~2023
OSCURA	~10	20,000	0.01 (goal)	1 x 10 ⁻⁶ (goal)	~2028

Oscura builds on existing efforts

The challenges are to increase mass (from 10s to 10,000s CCDs) and to reduce the backgrounds (2 orders of magnitude)

Major R&D **←**

Oscura: 10-kg skipper-CCD experiment

[arXiv:2202.10518]

Multi-Chip Module (16 skipper-CCDs)

Super Module

Detector payload in 6 columnar slices (96 SMs)

Oscura: Sensors fabrication

NOTIFICATION of DISCONTINUANCE of 150mm CCD process wafer fabrication.

- Partnered with 2 foundries: Microchip Technology Inc. and MIT Lincoln Laboratory
- Stephen Holland (LBNL) adapted the design to the 200 mm diameter wafer processes
- In summer 2021 we received first batch of Oscura prototype skipper-CCDs (1278 x 1058 pix) and, after testing, we demonstrated the success of the fabrication [NIMA 1046 (2023), 167681]

JINST 18 (2023), P08016

Oscura: Sensors performance

Parameter	No events with >1e-	No events w 3e- or mor		Prototype	Units
Dark current	1×10^{-6}	1.6×10^{-4}	✓	3×10^{-2}	e ⁻ /pix/day
Readout time for full array	< 2	< 5	✓	3.4 (4.2)	hours
Pixel readout rate	> 188	> 76	✓	111 (89)	pix/s
Readout noise	< 0.16	< 0.20	/	0.19 (0.20)	e^- RMS
Spurious charge	$< 10^{-10}$	$< 10^{-8}$		7.2×10^{-7}	e^- /pix/transfer
Trap density with $\tau > 5.3$ ms	< 0.12		/	< 0.015	traps/pix
Charge transfer inefficiency	$< 10^{-5}$		/	$< 5 \times 10^{-5}$	1/transfer
VIS/NIR light blocking	> 90%		✓	95%	

- Sensors reach sub-electron noise and meet almost all constraints to reach desired instrumental background
- Spurious charge is under study and new approaches are being implemented
- Installed underground setup at MINOS (MOSKITA) to measure the ultimate DC

Oscura: Scaling up mass (MCMs/SMs fabrication)

- Fabrication of prototype Si MCMs at Argonne National Laboratory (Oscura needs ~1500 MCMs)
- Epoxying and wirebonding of sensors is done by hand → Plans to automate this process
- Si MCMs production will start soon to build the first Oscura SM

Oscura: Readout electronics

Check out Ana Botti's poster tonight!

Oscura requires ~24,000 readout channels complying with noise and readout time constraints

- Cold front-end electronics to reduce feedthrough complexity (only 94 cables outside vessel)
- 2 multiplexing stages → 256 channels result in 1 signal
- 1 LTA controls up to 16 SMs (4096 sensors) → 6 LTAs needed in total

Oscura: Massive testing setup with 10 MCMs (160 sensors)

[JINST 18 P01040]

- Copy of SENSEI-100 vessel with 10 prototype ceramic MCMs and the discrete readout electronics
- Largest ever built instrument with skipper-CCDs controlled by 1 LTA → Demonstrates electronics solution

~90% of the sensors working without a preselection! This is a BIG deal!*

*LSST, the largest "astronomical camera" has 189 CCDs!

Setup is being used to develop analysis software and could be used for early science

Oscura: Operation in LN2

Demonstrated stable operation of skipper-CCD in LN₂

Test of 1st SM in LN₂ coming soon!

Simulations validate the convective flow

 Exploring new ideas to make skipper-CCDs blind to LN₂ light emission

Oscura: Background control

Goal: 0.01 dru → Pathfinder experiments paving the way Decisions driven by simulations

Sources:

Cosmogenic activation of Si and Cu

³H in Si: Main bkgd (2 mdru/day at sea level)

 \rightarrow <5 days on surface

Can be baked out during fab! ("total" removal at 1000°C)

[PRD 102, 102006]

Isotopic contamination on front-end electronics, cables and components near the sensors

Low radioactive flex cable [arXiv:2303.10862] Simulations of ²³⁸U, ²³²Th and ⁴⁰K

- \rightarrow 4cm of cable visible to CCDs
- → Electronics behind inner shield (width>10cm)
- External backgrounds
 Outer shield: polyethylene
 Inner shield: ancient lead and
 electroformed copper

DAMIC-M cable	²³⁸ U [ppt]	²³² Th [ppt]
Commercial	2600 +/- 40	261 +/- 12
Customed	31 +/- 2	13 +/- 3

Oscura: Projected sensitivities for 30 kg-year

With the current sensor performance, we have zero background events with 4e⁻ or more (4e curve)

DM-electron scattering mediated by a heavy (left) or light (right) mediator

Oscura: Timeline and goals per period

^{✓ -} Achieved

^{*} Technically driven Oscura timeline

Oscura: Early science

With a partial load of sensors (Massive setup/OIT) we can do early science! **Search for millicharged particles** coming from the NuMI beam at Fermilab

[PRL 124, 131801 (2020)] AraoNeuT Decay Pipe 1033 m (z)

Number of fake tracks per day produced by random coincidences of uncorrelated single pixel hits

Threshold	doublets $(b=2)$	triplets $(b=3)$	p_{bkg}
$1e^-$	3822	11.4	3×10^{-4}
$2e^-$	0.031	2.72×10^{-7}	$8.6 \times 10 - 7$
3e ⁻	9.06×10^{-5}	4.17×10^{-11}	4.6×10^{-8}

If doing tracking, we are essentially background-free!

arXiv:2304.08625

Essential items:

- Large-mass setup → Massive setup / SM
- Location @ MINOS → MOSKITA

Exclusion limits are promising!

Take-home messages

- Oscura is a next-generation skipper-CCD DM search (10 kg active mass)
- Oscura will provide unprecedented sensitivity to sub-GeV DM interacting with electrons
- R&D work has been successfully completed and main risks have been addressed
- Oscura is in the design phase, with plan to begin construction in FY25 and operations at SNOLAB in FY29
- With a partial detector payload, Oscura can perform early science producing very competitive results

Stay tuned!

Ultra Low Background Cables Phase II SBIR w/ Q-Flex Inc.

Q-FLEX INC.

SBIR STTR

America's Seed Fund

²³²Th [ppt]

261 +/- 12

11 +/- 3

²³⁸U [ppt]

2600 +/- 40

31 +/- 2

- 1. Laminate Selection
- 2. Cut and Drill Laminate
 - 3. Cleaning at QFlex
 - 4. Shadow Seeding
 - 5. Electroplating
 - 6. Sanding
 - 7. Cleaning at PNNL
 - 8. Resist Coating
 - 9. Developing
 - 10. Etching
 - 11. Stripping
 - 12. Drying
 - 13. Cleaning at PNNL

 - 14. Coverlay Application
 - 15. Microetching
 - 16. ENIG Processing
 - 17. Cleaning at PNNL
- Blue: Standard Step Orange Outline: Modified Step Orange: New Step Green: Step done at PNNL

- Phase I: achieved $15-30 \times$ reduction in ²³⁸U and ²³²Th content.
- Phase II: Developed new low-background fabrication procedure.
 - Identified new radiopure raw materials
 - Developed custom cleaning method at PNNL
 - Changed process for key steps
- Phase II: Produced fully-functional cables with 10-30 ppt U and Th (25—100× reduction)
 - Presented at Low Radioactivity Techniques 2022
 - Paper on arXiv last week. To be submitted to journal https://doi.org/10.48550/arXiv.2303.10862

DAMIC-M CCD cable

Commercial

Our customed

*Slide from Richard Saldanha

Projected Internal Backgrounds

Simulations that indicate background requirement is within reach

Low-E background correlation with high-E events

[PRX 12 (2022) 011009]

 High-energy radiation interacting with setup results in low-E photons which can produce single-e- depositions that we are not efficiently extracting from our measurements

For Oscura, to determine the ultimate instrumental background, tests in a low-background environment are desired: MOSKITA (2in Pb shield) @ MINOS (100 m underground)

Skipper-CCDs: readout noise

Taken from real data!

Oscura: Technical requirements

[arXiv:2202.10518]

system	description	goal
sensor	readout noise	0.15 e- RMS
sensor	dark current	10^{-6} e/pix/day
readout	speed	166 pix/sec
readout	channel count	24,000
detector array	total mass	10 kg
detector array	number of pixels	28 Gpix
background	rate	0.01 dru
LN2 vessel	operating pressure	450 psi
cooling	capacity	1 kW
DAQ	data handling	1 petabyte/year

Sensors

- Find new foundries for mass-production of scientific-grade skipper-CCDs
- Reduce instrumental background below 1x10⁻⁶ e-/pix/day

Front-end electronics

Develop a low-cost, scalable, cold readout system and multiplexing

Radiation background

- Ensure use of low-background materials and cosmogenic activation control
- Oscura experiment design all driven by simulations to reach 0.01 dru

Skipper Readout

- In a conventional CCD, charge moved to the sense node must be drained
 - You can integrate longer, but you cannot beat the 1/f noise
- The Skipper amplifier lets you make multiple non-destructive measurements!

DAMIC: Background study

[PRD 105, 062003] [JINST 16 P06019] [PRL 125, 241803]

²¹⁰Pb

1.343

9 CCD (back surf.)

10 CCD (wafer surf.)

Back

< 0.01

1.84

< 0.01

2.43

 $< 0.1 \text{ nBq/cm}^2$

 $56 \pm 8 \text{ nBq/cm}^2$

 $z = -2 \mu m$

Multi e- low-E backgrounds: SR and PCC events

SR events

- Charge deposition in the inactive volume of the sensor
- Can be identified by their shape and masked

PCC events

- ~5 µm layer in the back of the sensors where charge partially recombines because of a gradient in the P concentration ($10^{20} \rightarrow 10^{11} \text{ P atoms/cm}^3$)
- Backside treatment to remove this layer available

CCD without back treatment

Back-treated CCD

[PRA 15, 064026 (2021)]

Skipper-CCDs: readout

- Multiple (N) measurements of same charge packet without being corrupted nor destroyed
- Averaging N off-chip, noise is reduced as $\sigma = \frac{\sigma_1}{\sqrt{N}}$
- Readout time increases proportional to N (can be optimized depending on your interests)

First performance demonstration with a detector designed by Stephen Holland (LBNL) allowing to count electrons in a wide dynamic range! [PRL 119, 131802 (2017)]

Correlated Double Sampling to measure charge:

- 1. Pedestal integration
- 2. Signal integration
- 3. Charge = Signal Pedestal
- 4. Repeat N times
- 5. Pixel value = average of all samples

Low-frequency noise can be reduced!

