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b-tagging at LHC
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e Flavour tagging

E Vs=13Tev, 139" B VH, H - bb (u=1.17) ]
35F 04142 leptons 7 Diboson E
* Aims to identify the Flavour of the jet (b, c, light) qp. 2r3ets 2 brass (] B-only uncertainty
Dijet mass analysis 1
Weighted by Higgs S/B

* Processes with heavy flavour quarks (b,c) play a key role in the LHC
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* B—C, semileptonic decays, etc.



https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/

ATLAS Flavour Tagging Machine Learnlng
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e Based on a two-stage approach Year

* Low-level algorithms use properties of individual charged-particle tracks associated with a jet or
combine tracks to explicitly reconstruct displaced vertices

» The outputs are fed into high level taggers which are Neural Networks (DL1 series)
e Recent Analyses of Run 2 and Run 3 LHC data based on new high-level algorithms
» Based on recurrent (DL1r) and deep sets networks (DL1d)

» Considerable improvements over previous work (which were based on boosted decision trees or
likelihood discriminants)



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/
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Flavour Tagging with Graphs R

e A new approach with a “all-in-one tagger” : GN1 r——- -=-1
|

» Utilizes a single neural network to predict the jet flavour,
directly taking as inputs:

* jet pT, n

Associated
tracks

» tracks parameters, uncertainties, impact parameters
» detailed hit information

» Simplification: no need for low level algorithms and tuning,
permutation invariant (no ordering)

» Trained with auxiliary objectives
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» Grouping of tracks originating from a common vertex (vertex '

Track origins;
Vertices

“finding” only, no vertex “fitting”) T
— vertexing Nodes (racks)ar reprosentad by vectors
» Prediction of the underlying physics process from which each o

track originated (b,c, light, pile-up, fake, etc.) @ —> xl
— track origins Each node h, in the graph corresponds to a si-::gle track in

the jet, and is characterised by a feature vector (or
representation) of length 23 based on the above inputs



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/

Vertexing

A
Tracks

ée " Tracks
*

D, = log Py
(Auxiliary tasks) fl‘f; *Pe + (1 _f.;;) * Pu

} Building the discriminant

relative weight of p, to p, in the score D,

Jet flavour probabilities:
Py PPy
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* GN1 demonstrates considerably better c- and light-jet rejection compared with DL1r
¢ At the 70% working point (WP)

* x2.1 in c-jet rejection
» x1.8 in light-jet rejection

e GN1 Lep variant includes an additional track-level input which indicates if the track was used in the
reconstruction of an electron or a muon = improved performance with respect to the baseline GN1 mode




Performance: Z’ (i.e. high pT)

6

. — . ‘ -
10 ‘ATLAS Slmulanon Prehmmary — oL 3 10 ATLAS Slmulatlon Prehmlnary — ot 1
F VS =13 TeV — GN1 ] sf VS =13Tev —— GN1 ]

[ Z', 250 < pr <5000 GeV — GN1 Lep ] 10" F Z, 250 < pr < 5000 GeV — GN1Lep 5

S

o'F

C-jet rejection

w
T,

Light-jet rejection
= 2

Ratio to DL1r
Ratio to DL1r

204 06 08 10 24 06 08 10
b-jet tagging efficiency b-jet tagging efficiency

e At the 30% working point (WP)

* x2.8 in c-jet rejection
* X6 in light-jet rejection




Vertexing

Auxiliary tasks: track origins + vertexing

%e'/' B Truth Origin  Description
g - Pileup From a pp collision other than the primary interaction
7NN (Audlary tacke) Fake Created from the hits of multiple particles
-------- > Primary Does not originate from any secondary decay
W, \_/ argmax over the fromB From the decay of a b—hadrf)n . .
output probabilities fromBC From a c-hadron decay, which itself is from the decay of a b-hadron
fromC From the decay of a c-hadron

PpPoPy (Primary task) OtherSecondary  From other secondary interactions and decays

° Cherrv-picked example: quantitative analysis of the track classification and vertexing tasks — next slide
ATLAS Simulation Preliminary

Vs =13 TeV Truth Labels GN1 Prediction Truth
tt jets i) Ik Predicted
1l @ 1 ok
. The jet contains
Truth b-jet 7 7 i
! . 4 ® Pileup two pileup tracks
pr=134.1 GeV | @ Fake
« - - © Primary—7 A.prlmary vertex
pp = 0.995 o g with seven tracks
< & @ FromB ~
pc=0.005 ] 7 O FromBC Two tracks from
= i 1 the B deca
pu = 0.000 i ] O FromC & y
. - Three tracks from
The filled black boxes . y ® FromTau 1 decay B> C
indicate tracks which are - - O OtherSecondary
grouped together into !
vertices (score >0.5) Nirack Nirack

e GN1 correctly predicts track origins and vertex compatibility for all tracks in the jet in this example




Auxiliary tasks performance
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o
e Vertexing Eo
. - . 0.6 [+ i
 An efficient vertex requires:
¢ recall of > 65% of tracks in the truth vertex 04F i
e purity of > 50% of tracks in the reco vertex —— Heavy Flavour (AUC = 0.91)
. . . . . . 02 Pri & OtherS d (AUC = 0.92) -
* GN1 correctly identifies 80% of truth vertices inside b-jets — pﬁmr’(’;\uc =eor.ges§°n ary
| —— Fake (AUC = 0.98) 1
0 ! L L | ! L L | ! L L | ) L ! | ! L L
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False Positive Rate

Auxiliary tasks:

« Helps the jet flavour prediction via supervised attention: in detecting tracks from heavy flavour decays =
the model learns to pay more attention to these tracks

» Helps with the interpretability of the network




High Luminosity LHC

e HL LHC:

» Planned to be completed by 2029

» Average 200 pp collisions per bunch crossing!

= makes tagging even more challenging

» Significant upgrade of the tracking detector (ITk) will
improve Flavour Tagging [ATL-PHYS-PUB-2022-047]
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e GN1 improvements with respect to previous
generation of flavour tagging algorithms

» Up to 30% improvement in b-efficiency at high-pT

» 15% improvement in the forward region (n>2.5)



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-047/

Run 3 data/MC Agreement: Multijet / ttbar Dllepton
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e Multijet with “tag and probe”: tag jet with pT> 200 GeV and 85% WP

* Probe jets shown with pT>500 GeV = Good agreement (the low discriminant tail, small increase in discrepancy)
e Dilepton ttbar: OS eu (pT>28 GeV) with single lepton trigger + 2 jets (pT>20 GeV)

« Invariant mass of each lepton-jet pair must be below 175 GeV

» Leading jet pT shown = Very good agreement



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2018-01/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-010/

Generator Dependence
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e Testing the GN1 model on other MC samples 5} .

to check if it is not learning generator W SN DT U DU D SO
dependent information e ——
1.00 ##_’h_.‘_* _!__
e Overall generator dependence: §o.gs§fij-*5ﬂﬂ_ ‘ .
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e Similar to previously observed values for DL1r/DL1d

pr[GeV]




Pushing Further Improvements (GN2)

e GN1 — GN2 [FTAG-2023-01]
» The majority of the changes are optimisations _Type Name GN1 | GN2
Hyperparameter | Trainable parameters 0.8M 1.56M
for the model hyper parameters. Hyperparameter | Learning rate le—3 OneCycle LRS (max LR 4e—5)
. . - Hyperparameter | GNN Layers 3 6
4 OptlmISEd tralnlng Hyperparameter | Attention Heads 2 8
. L. . ) Hyperparameter | Embed. dim 128 192
° Learnlng rate Optlmlsatlon_) using One-CycIe Architectural Attention type GATv2 | ScaledDotProduct
learning rate scheduler [1803.09820] Architectural Dense update No Yes (dim 256)
Architectural Separate value projection | No Yes
i Architectural LayerNorm + Dropout No Yes
[ J Y 1
Updated arChIteCture Inputs Num. training jets 30M 192M

» Follows transformer architecture
[1706.03762]:

Dest
node hj

» The attention type has been changed — ScaledDotProduct [1706.03762]: no
effect on physics performance but improves the training time and memory
footprint.

» Using the separate linear projection— separates the computation of the

attention weights from the computation of the updated node representations o= Wi Wry/s [

» Using a dense layer in between the attention layers

uonoafoad Jeaulq
s -

hj; = softmax(ey) - Wyh;

e Increased training statistics
» 30M (based on down sampling) — 192M training jets (PDF sampling)

Dense



https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1706.03762
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://arxiv.org/abs/1706.03762
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Conclusion

e Next generation b/c taggers based on Graph Neural Networks show very promising
results

* 4x improvement in background rejection since DL1
* MC/MC and Data/MC checks performed = moving toward full calibration
» Expect strong benefit on ATLAS physics program at Run 3 LHC and HL-LHC
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Why Graph Neural Networks ?

* GNN easily applicable in domains where:
» The data can be represented as a set of nodes //\\
» The prediction depends on the relationships (edges) (i (
between the nodes
B K* *
e HEP data naturally match to the graph structure //\
« HEP data is heterogeneous and sparse - i .
 Variable number of input items (e.g., tracks in the event) /\\
* No primordial ordering (physics-inspired imposed ordering d & B
reduces performance) \ W -RARTICLE
% - RECO ELECTRON
« Build representations of each jet/track/object aware of the Y & - TRALK

features of the other jets/tracks/objects in the event

» Easy to introduce auxiliary physics-inspired tasks

e Graph Attention Networks

e Considered as the state-of-the-art of GNN architecture




GN1 architecture: Inputs

Track inputs Combined Inputs

Jet inputs

Njs

Ntracks X Ntf Ntracks X (njf + ntf)

e Inputs to GN1

* Two jet features (n; = 2): pT and n
* An array of n,,

* each track is described by 21 track features (n, = 21).

* The jet features are copied for each of the tracks

* The combined jet-track vectors of length 23 —
form the inputs of GN1

Jet Input Description

pr Jet transverse momentum

n Signed jet pseudorapidity

Track Input Description

q/p Track charge divided by momentum (measure of curvature)
dn Pseudorapidity of the track, relative to the jet 5

do Azimuthal angle of the track, relative to the jet ¢

dy Closest distance from the track to the PV in the longitudinal plane
zgsind Closest distance from the track to the PV in the transverse plane
alq/p) Uncertainty on q/p

a(8) Uncertainty on track polar angle 6

(o) Uncertainty on track azimuthal angle ¢

s(dg) Lifetime signed transverse IP significance

s(zg) Lifetime signed longitudinal IP significance

nPixHits Number of pixel hits

nSCTHits Number of SCT hits

nIBLHits Number of IBL hits

nBLHits Number of B-layer hits

nIBLShared Number of shared IBL hits

nIBLSplit Number of split IBL hits

nPixShared Number of shared pixel hits

nPixSplit Number of split pixel hits

nSCTShared  Number of shared SCT hits

nPixHoles Number of pixel holes

nSCTHoles Number of SCT holes




GN1 architecture

Each node A, in the graph Each of the objectives makes use of
corresponds to a single track in the global representation of the jet
the jet, and is characterised by a booled araph
feature vector (or representation) GNN Output: representations represematlon =
of each track that are —| 55 |— Jetflavour ;. and light-jet classes)
conditional on the other representatlon) g prediction

tracks in the jet

& ™
—| % £ — — g g |— Track origin = (track truth origin, see
FE 28 predictions  gefinition other slides)
Combined Intial track Conditional track
Inputs T representation FEPFESEN&UDH
* (perform binary
T E’g — :f:;zﬁms classification of the
“2 track-pair compatibility)
Deep Sets Graph Neural Network,
Architecture with multihead attention
Layers 3 Layers °
N g ‘ 64 Num nodes 128 . f
um noces Auxiliary Task Heads
Attention heads 2

* The combined jet-track » Three separate fully connected
vectors are fed into a * A fully connected graph is built feedforward neural networks are then
per-track initialisation from the outputs of the track used to independently perform the
network initialisation network, such that different classification objectives of GN1
eaCh nOde in the graph Network Hidden layers Output size
neighbours every other node Fise cooion vk 1R 0% 1

Graph classification network 128, 64, 32, 16 3




GN1 Training

e GN1 training procedure minimises the total loss function

Categorical cross entropy
over track origin labels

e

LT otal = LJer s alT rack e :B LVerrex

Categorical cross entropy
over jet flavour labels

Binary cross entropy
over whether tracks share a vertex

® Inference TlmlngS Inference time per jet [ms]
» Acceptable timings compared to total offline event reco O(10s), and  ttoar z

HLT O(100ms)

GN1 | 040 0.78




Input features to the GN1 model

Jet Input Description

Pr Jet transverse momentum

i Signed jet pseudorapidity

Track Input Description

q/p Track charge divided by momentum (measure of curvature)

dn Pseudorapidity of the track, relative to the jet n

de Azimuthal angle of the track, relative to the jet ¢

dy Closest distance from the track to the PV in the longitudinal plane
Zg siné Closest distance from the track to the PV in the transverse plane
o(q/p) Uncertainty on ¢/p

o(8) Uncertainty on track polar angle 6

o(p) Uncertainty on track azimuthal angle ¢

s(dg) Lifetime signed transverse IP significance

s(z0) Lifetime signed longitudinal IP significance

nPixHits Number of pixel hits

nSCTHits Number of SCT hits

nIBLHits Number of IBL hits

nBLHits Number of B-layer hits

nIBLShared Number of shared IBL hits

nIBLSplit Number of split IBL hits

nPixShared Number of shared pixel hits

nPixSplit Number of split pixel hits

nSCTShared Number of shared SCT hits

nPixHoles Number of pixel holes

nSCTHoles Number of SCT holes

leptonID Indicates if track was used in the reconstruction of an electron or muon (only for GN1 Lep)




c-tagging
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Vertexing

Auxiliary tasks: track origins + vertexing

kR
N K — Truth Origin Description
K Pileup From a pp collision other than the primary interaction
o NN (Auxiliary tasks) Fake Created from the hits of multiple particles
e » | Track classification Primary Does not originate from any secondary decay
(from b/c/z/PV/...) (a rgmax over the fromB From the decay of a b-hadron
A - - ich i i -
Ny output probabllltles) fromBC From a c-hadron decay, which itself is from the decay of a b-hadron
fromC From the decay of a c-hadron
Pip Por Pa (Primary task) OtherSecondary  From other secondary interactions and decays

ATLAS Simulation Preliminary

Vs =13TeV Truth Labels GN1 Prediction Truth

e GN1 prediction

tt jets Predicted (exa m ple)
2L i @ Pileup « Correctly predicts the track
pr=32.2 Gel © Fake origins and vertex
py=0997 3 k o et compatibility for the tracks
pci0.003 = € O FromBC of the Primary Vertex
pu=0:000 u © FromC » Fails to resolve B and B—>C
.E ® FromTau decay vertices
O OtherSecondary

The filled black boxes_~~ "~ i * correctly predict the heavy
indicate tracks which are track track flavour track origins

grouped together into
vertices (score >0.5)




Auxiliary Tasks

e Removal of components in the model to study their impact:

» The resulting trainings demonstrate how useful the different auxiliary training
objectives are for the primary jet classification objective
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