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b-tagging at LHC
• Flavour tagging

• Aims to identify the Flavour of the jet  (b, c, light)

• Processes with heavy flavour quarks (b,c) play a key role in the LHC 
physics program (ex. H→bb)

Eur. Phys. J. C 81 (2021) 178 

• Features

• At least one secondary vertex displaced by a few mm from the hard-
scatter collision point  

• Large track impact parameters (d0, z0 x sin )

• B→C, semileptonic decays, etc. 

https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
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ATLAS Flavour Tagging Machine Learning

• Based on a two-stage approach

• Low-level algorithms use properties of individual charged-particle tracks associated with a jet or 
combine tracks to explicitly reconstruct displaced vertices

• The outputs are fed into high level taggers which are Neural Networks (DL1 series)

• Recent Analyses of Run 2 and Run 3 LHC data based on new high-level algorithms 

• Based on recurrent (DL1r) and deep sets networks (DL1d)

• Considerable improvements over previous work (which were based on boosted decision trees or 
likelihood discriminants)

ATL-PHYS-PUB-2020-014

FTAG-2019-07 ATL-PHYS-PUB-2022-047

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-047/
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Flavour Tagging with Graphs
• A new approach with a “all-in-one tagger” : GN1

• Utilizes a single neural network to predict the jet flavour,
directly taking as inputs:

• jet pT, 

• tracks parameters, uncertainties, impact parameters

• detailed hit information  

• Simplification: no need for low level algorithms and tuning, 
permutation invariant (no ordering) 

• Trained with auxiliary objectives

• Grouping of tracks originating from a common vertex (vertex 
“finding” only, no vertex “fitting”)

→ vertexing

• Prediction of the underlying physics process from which each 
track originated (b,c, light, pile-up, fake, etc.) 

→ track origins Each node ℎ𝑖 in the graph corresponds to a single track in 
the jet, and is characterised by a feature vector (or 
representation) of length 23 based on the above inputs 

[ATL-PHYS-PUB-2022-027]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
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Building the discriminant

• c-tagging

• Single model is used for both b-tagging
and c-tagging !

𝑓𝑐 is a free parameter that determines the 
relative weight of 𝑝𝑐 to 𝑝𝑙 in the score 𝐷𝑏
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Performance: ttbar

• GN1 demonstrates considerably better 𝑐- and light-jet rejection compared with DL1r

• At the 70% working point (WP) 

• x2.1 in c-jet rejection

• x1.8 in light-jet rejection 

• GN1 Lep variant includes an additional track-level input which indicates if the track was used in the 
reconstruction of an electron or a muon  improved performance with respect to the baseline GN1 model
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Performance: Z’ (i.e. high pT)

• At the 30% working point (WP) 

• x2.8 in c-jet rejection

• x6 in light-jet rejection 
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• GN1 correctly predicts track origins and vertex compatibility for all tracks in the jet in this example

The jet contains 
two pileup tracks

A primary vertex 
with seven tracks 

Two tracks from 
the B decay 

Three tracks from 
the decay B → C The filled black boxes 

indicate tracks which are 
grouped together into 
vertices (score >0.5)

Auxiliary tasks: track origins + vertexing

argmax over the 
output probabilities

• Cherry-picked example: quantitative analysis of the track classification and vertexing tasks → next slide 
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Auxiliary tasks performance

• Tracks origins

• Each group of origins has a good classification 
performance with a AUROC > 0.9

• Vertexing

• An efficient vertex requires:

• recall of > 65% of tracks in the truth vertex

• purity of > 50% of tracks in the reco vertex

• GN1 correctly identifies 80% of truth vertices inside b-jets

Auxiliary tasks:
• Helps the jet flavour prediction via supervised attention: in detecting tracks from heavy flavour decays 

the model learns to pay more attention to these tracks
• Helps with the interpretability of the network
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High Luminosity LHC
• HL LHC: 

• Planned to be completed by 2029

• Average 200 pp collisions per bunch crossing!

 makes tagging even more challenging

• Significant upgrade of the tracking detector (ITk) will 
improve Flavour Tagging [ATL-PHYS-PUB-2022-047]  

• GN1 improvements with respect to previous 
generation of flavour tagging algorithms

• Up to 30% improvement in b-efficiency at high-pT 

• 15% improvement in the forward region (>2.5)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-047/
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Run 3 data/MC Agreement: Multijet / ttbar Dilepton

• Multijet with “tag and probe”: tag jet with pT> 200 GeV and 85% WP 

• Probe jets shown with pT>500 GeV  Good agreement (the low discriminant tail, small increase in discrepancy)

• Dilepton ttbar: OS e (pT>28 GeV) with single lepton trigger + 2 jets (pT>20 GeV)  

• Invariant mass of each lepton-jet pair must be below 175 GeV

• Leading jet pT shown  Very good agreement 

The simulation is 
scaled to match the 
total yield in data

Run 2 b/c/light calibration:

• ttbar: Eur. Phys. J. C 79 (2019) 970 

• Multijet:  ATL-PHYS-PUB-2022-010

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2018-01/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-010/


12
Arnaud Duperrin DIS 2023, Michigan State University March 30, 2023

Generator Dependence
• Models are trained on “best-knowledge” 

samples

• Low-pT ttbar : POWHEGBOX + PYTHIA8 + EVTGEN 

• High-pT Z’: PYTHIA8 + EVTGEN 

• Testing the GN1 model on other MC samples 
to check if it is not learning generator 
dependent information

• Overall generator dependence:

• O(3%) for b-jets and O(6%) for c-jets 

• Similar to previously observed values for DL1r/DL1d
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Pushing Further Improvements (GN2)
• GN1 → GN2

• The majority of the changes are optimisations 
for the model hyper parameters. 

• Optimised training 

• Learning rate optimisation→ using One-Cycle 
learning rate scheduler [1803.09820]

• Updated architecture

• Follows transformer architecture 
[1706.03762]:

[FTAG-2023-01]

• The attention type has been changed → ScaledDotProduct [1706.03762]: no 
effect on physics performance but improves the training time and memory 
footprint.

• Using the separate linear projection→ separates the computation of the 
attention weights from the computation of the updated node representations

• Using a dense layer in between the attention layers
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• Increased training statistics

• 30M (based on down sampling) → 192M training jets (PDF sampling)

https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1706.03762
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://arxiv.org/abs/1706.03762
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GN2 ttbar Performance

• Ratio to DL1d

• DL1d is a modification of the DL1r tagger 
[FTAG-2019-07] with the DIPS network [ATL-
PHYS-PUB-2020-014] replacing RNNIP

• GN2 compared to GN1 

• 1.5x c-rejection and 2x light-rejection on ttbar

• 1.75x c-rejection and 1.2x light-rejection on Z’

[FTAG-2023-01]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
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Conclusion
• Next generation b/c taggers based on Graph Neural Networks show very promising 

results   

• 4x improvement in background rejection since DL1

• MC/MC and Data/MC checks performed  moving toward full calibration

• Expect strong benefit on ATLAS physics program at Run 3 LHC and HL-LHC 
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backup



17
Arnaud Duperrin DIS 2023, Michigan State University March 30, 2023

Why Graph Neural Networks ?

• GNN easily applicable in domains where: 

• The data can be represented as a set of nodes 

• The prediction depends on the relationships (edges) 
between the nodes

• HEP data naturally match to the graph structure

• HEP data is heterogeneous and sparse

• Variable number of input items (e.g., tracks in the event)

• No primordial ordering (physics-inspired imposed ordering 
reduces performance)

• Build representations of each jet/track/object aware of the 
features of the other jets/tracks/objects in the event

• Easy to introduce auxiliary physics-inspired tasks

• Graph Attention Networks

• Considered as the state-of-the-art of GNN architecture
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GN1 architecture: Inputs

• Inputs to GN1

• Two jet features (njf = 2): pT and 

• An array of ntracks

• each track is described by 21 track features (ntf = 21). 

• The jet features are copied for each of the tracks

• The combined jet-track vectors of length 23 
form the inputs of GN1
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GN1 architecture

• The combined jet-track 
vectors are fed into a 
per-track initialisation 
network

• A fully connected graph is built 
from the outputs of the track 
initialisation network, such that 
each node in the graph 
neighbours every other node

Each node ℎ𝑖 in the graph 
corresponds to a single track in 
the jet, and is characterised by a 
feature vector (or representation) Output: representations 

of each track that are 
conditional on the other 
tracks in the jet

• Three separate fully connected 
feedforward neural networks are then 
used to independently perform the 
different classification objectives of GN1

Each of the objectives makes use of 
the global representation of the jet

(perform binary 
classification of the 
track-pair compatibility)

(global jet 
representation)

(𝑏-, 𝑐- and light-jet classes)

(track truth origin, see 
definition other slides)



20
Arnaud Duperrin DIS 2023, Michigan State University March 30, 2023

GN1 Training
• GN1 training procedure minimises the total loss function

• Inference Timings

• Acceptable timings compared to total offline event reco O(10s), and 
HLT O(100ms)
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Input features to the GN1 model
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c-tagging
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The filled black boxes 
indicate tracks which are 
grouped together into 
vertices (score >0.5)

Auxiliary tasks: track origins + vertexing

(argmax over the 
output probabilities)

• GN1 prediction 
(example)

• Correctly predicts the track 
origins and vertex 
compatibility for the tracks 
of the Primary Vertex

• Fails to resolve B and B→C 
decay vertices

• correctly predict the heavy 
flavour track origins 
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Auxiliary Tasks
• Removal of components in the model to study their impact:

• The resulting trainings demonstrate how useful the different auxiliary training 
objectives are for the primary jet classification objective
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