Measurements of top quark production cross-sections with the ATLAS detector

Miguel Príncipe

on behalf of the ATLAS Collaboration

Universidad Autónoma de Madrid

DIS2023: XXX International Workshop on Deep-Inelastic Scattering and Related Subjects Michigan State University, East Lansing, Michigan (USA) March 27-31, 2023

In pp collisions, top quarks are produced predominantly in pairs via QCD or singly via EW interactions.

The large top-production cross section at the LHC results in high-statistics samples that enable unique tests of the SM and searches for new phenomena.

Motivation

Single-top production is a powerful probe of the top-quark electroweak couplings. Measurements of the $t\bar{t}$ -production cross section allow tests of QCD at the highest accessible energy scales:

- predictions are available at NNLO QCD, including resummation of NNLL soft-gluon terms.
- $t\bar{t}$ measurements have been used to constrain the proton PDFs.

 $t\bar{t}\mbox{-}{\rm production:}$ sensitive to new physics and dominant background in BSM searches.

Introduction

Single-top production and $t\bar{t}$ decay channels and their background processes:

single-top backgrounds	top-pair backgrounds
 tt other single-top (t-channel, Wt) W+jets Z+jets diboson multijets 	 single-top ttV and ttH W+jets Z+jets diboson multijets

Measurement of single top-quark production in the s-channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector [arXiv: 2209.08990]

The dominant Feynman diagram for s-channel single top-quark production is $q\bar{q}' \rightarrow t\bar{b} \rightarrow Wb\bar{b}$.

Observation of s-channel production by CMS at $\sqrt{s} = 7$ and 8 TeV with 2.5σ significance and by ATLAS at $\sqrt{s} = 8$ TeV with 3.2σ significance.

In the new ATLAS analysis using $\mathcal{L} = 139$ fb⁻¹ at $\sqrt{s} = 13$ TeV, measurement of single-top production in leptonic channel:

- experimental signature: isolated e or μ , large missing transverse momentum (due to undetected ν from W decay) and two b-tagged jets.

Measurement of single top-quark production in the s-channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector [arXiv: 2209.08990]

Signal extraction: discriminant based on simulations to separate signal from background.

The production cross section is measured using a binned profile maximum-likelihood fit of the discriminant in the signal region.

Measurements of inclusive $t\bar{t}$ cross sections

 $\sqrt{s} = 5.02 \text{ TeV}, \ \mathcal{L} = 257 \text{ pb}^{-1}$ [arXiv: 2207.01354]:

- Signal: dilepton (event counts) and single-lepton (BDT) final states decay channels measured separately and then combined.

$\sqrt{s} = 7$ TeV, $\mathcal{L} = 4.6$ fb⁻¹ [arXiv: 2212.00571]:

- Signal: ℓ +jets.
- Method: support vector machines.

	Measurement	NNLO+NNLL		
\sqrt{s} [TeV]	$\sigma_{t\bar{t}} \ [pb]$	$\sigma_{t\bar{t}} \ [pb]$		
5.02	67.5 ± 2.7	$68.2^{+5.2}_{-5.3}$		
7	$168.5^{+7.1}_{-6.7}$	177^{+10}_{-11}		
13.6	859 ± 29	$924_{-40}^{+\overline{32}}$		

 Signal: decays with an opposite-charge eµ pair in the final state.

6/15

Measurements of inclusive $t\bar{t}$ cross sections

 $\sqrt{s} = 7$ and 8 TeV, $\mathcal{L} = 5$ and 20 fb⁻¹ from ATLAS and CMS [arXiv: 2205.13830]:

- Combination of measurements of the inclusive $t\bar{t}$ production cross section performed by ATLAS and CMS.
- Signal: decays with an opposite-charge $e\mu$ pair in the final state.

	Measurement	NNLO+NNLL
$\sigma_{t\bar{t}}$ (7 TeV)	178.5 ± 4.7 pb	$177^{+10}_{-11}~{ m pb}$
$\sigma_{t\bar{t}}$ (8 TeV)	243.3 ^{+6.0} _{-5.9} pb	$255.3^{+10.6}_{-12.2} \text{ pb}$
R _{8/7}	1.363 ± 0.032	$1.428\substack{+0.005\\-0.004}$

ATLAS, CMS and ATLAS+CMS measurements:

Fits to the combined measurements using NNLO+NNLL QCD predictions were performed to extract:

$$m_t^{pole} = 173.4^{+1.8}_{-2.0}$$
 GeV (with $\alpha_s(m_Z)$ fixed to 0.118 ± 0.001)

- $\alpha_s(m_Z) = 0.1170^{+0.0021}_{-0.0018}$ (with m_t^{pole} fixed to 172.5 ± 1.0 GeV)

< ロ > < 同 > < 回 > < 回 >

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb⁻¹ [arXiv: 2205.02817]

- Highly boosted tops probing QCD at TeV scale: large prediction uncertainties and sensivity to BSM.
- Signal extraction using DNN for top-quark-tagging and b-tagging.

Selection: $p_T^{t,1} > 500$ GeV and the second-leading top-quark jet has $p_T^{t,2} > 350$ GeV.

Measurements of normalised differential cross sections at particle level:

Disagreement between data and theory (NLO) observed in some regions of phase space.

8/15

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb⁻¹ [arXiv: 2205.02817]

Measurements of normalised differential cross sections at parton level:

Also disagreements with NLO observed.

Inclusive and differential cross-sections for dilepton $t\bar{t}$ production measured in $\sqrt{s} = 13$ TeV *pp* collisions with the ATLAS detector [arXiv: 2303.15340]

New ATLAS analysis with $\mathcal{L} = 140 \text{ fb}^{-1}$ at $\sqrt{s} = 13 \text{ TeV}$, in opposite sign $e\mu$ channel and one or two b-tagged jets.

Very precise absolute and normalised single and double differential cross sections are measured.

The precision of the measurements is 2% for the absolute cross sections and at 1% level for the normalised cross sections.

No single NLO QCD prediction can describe all measured observables simultaneously.

Measurement of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at $\sqrt{s} = 13$ TeV [JHEP 06 (2022) 063]

Measurements of $t\bar{t}$ production in the semileptonic channel with the hadronically decaying top reconstructed as a R = 1.0 jet with high p_T .

The analysis introduces a novel method which uses the reconstructed top-quark mass to reduce the impact of uncertainties from the jet energy scale by introducing an Scale Factor.

M. Príncipe (UAM)

Measurement of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at $\sqrt{s} = 13$ TeV [JHEP 06 (2022) 063]

Differential cross-section measurements for the observables related to the kinematics of the top quarks compared with theoretical predictions.

No single prediction describes all the measured observables simultaneously. Applying parton-level reweighting to match NNLO QCD predictions improves the description

- the NNLO corrections are important given the precision of the measurements.

EFT interpretation [arXiv: 2205.02817 & JHEP 06 (2022) 063]

BSM searches were performed on the analyses presented based on the EFT approach, using this Lagrangian:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i,D} \frac{\mathcal{L}_i^D}{\Lambda^{D-4}} O_i^D$$

Only D=6 operators were added to the SM Lagrangian in these analyses.

All-hadronic channel [arXiv: 2205.02817] Using dim6top & EFT fitter $a_{a}^{,8}, C_{Oa}^{1,8}, C_{Ou}^{8}, C_{Qd}^{8}, C_{ta}^{8}, C_{tu}^{8}$ and C_{td}^{8}

Semileptonic channel [JHEP 06 (2022) 063] Using SMEFT@NLO & EFT*fitter* C_{tG} and C_{tg}^{8}

Measurements of top XS with ATLAS

EFT [arXiv: 2205.02817 & JHEP 06 (2022) 063]

The inclusion of the quadratic terms leads to tighter bounds for all Wilson coefficients.

Semileptonic channel [JHEP 06 (2022) 063]

Model	$C_i (\Lambda/\text{TeV})^2$	Marginalised Expected	95% intervals Observed	Individual 9 Expected	5% intervals Observed	Global fit 95% limits
Λ^{-4}	$\begin{vmatrix} C_{tG} \\ C_{tq}^{(8)} \end{vmatrix}$	[-0.44, 0.35] [-0.57, 0.17]	[-0.53, 0.21] [-0.60, 0.13]	[-0.44, 0.28] [-0.57, 0.18]	[-0.52, 0.15] [-0.64, <mark>0.12]</mark>	[0.006, 0.107] [-0.48, 0.39]
Λ^{-2}	$\begin{vmatrix} & C_{tG} \\ & C_{tq}^{(8)} \end{vmatrix}$	[-0.44, 0.44] [-0.35, 0.35]	[-0.68, 0.21] [-0.30, 0.36]	[-0.41, 0.42] [-0.35, 0.36]	[-0.63, 0.20] [-0.34, 0.27]	[0.007, 0.111] [-0.40, 0.61]

Better bounds than the global fit are achieved for C_{tq}^8 in some of the fits ^c performed.

M. Príncipe (UAM)

Conclusions

Several new measurements of single-top and $t\bar{t}$ production at different centre-of-mass energies and in different decay channels were presented, including a combination with CMS data.

The precision of the measurements in leptonic channels is higher.

Novel methods to reduce the jet energy scale uncertainty were developed.

No single NLO+PS model describes all the measurements simultaneously.

- Clearly, higher-order corrections are needed to improve the description of the data.
- This is supported by applying parton-level reweighting to match NNLO QCD predictions, which shows that NNLO corrections are important.

Searches of physics BSM were performed by using an EFT interpretation.

- No evidence of new physics is seen.
- Tighter bounds on some Wilson coefficients were obtained.