

Recent highlights of top-quark properties measurements with the ATLAS detector at the LHC

Jose Enrique García Navarro

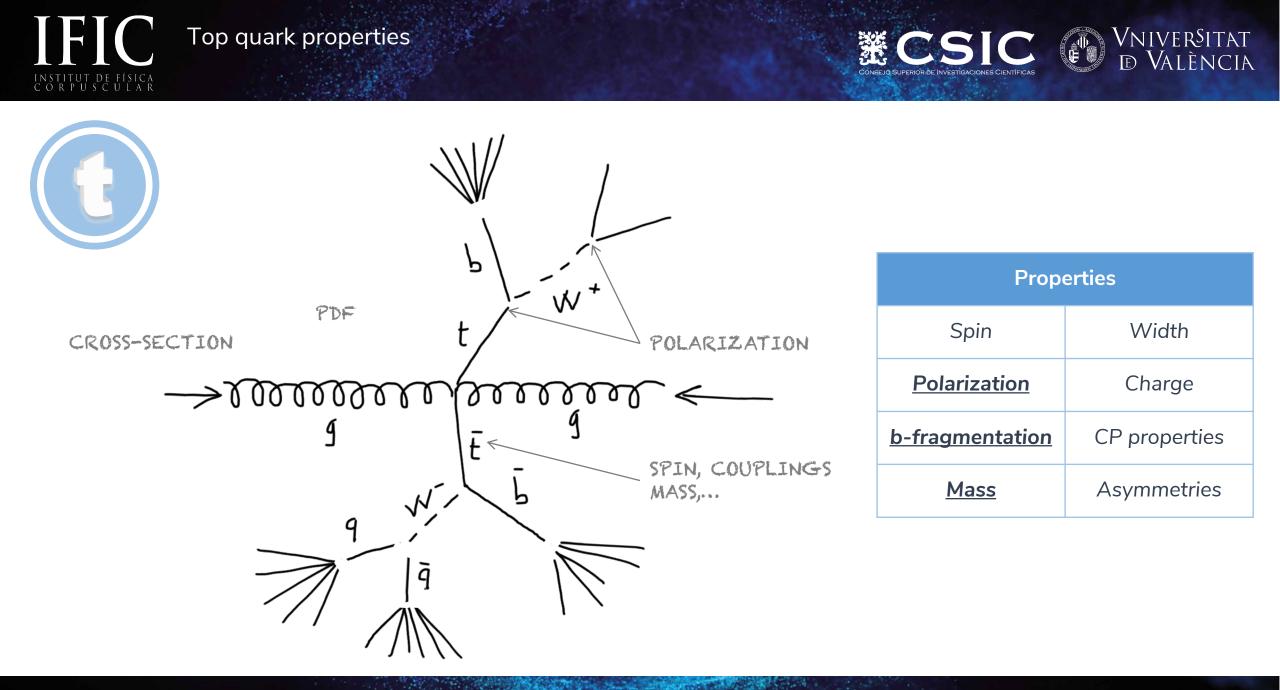
on behalf of the ATLAS Collaboration

Heaviest fundamental particle in the Standard Model

Large coupling to SM Higgs + m_{top} is a fundamental parameter in SM

Processes including top are backgrounds for new physics

Good understanding \rightarrow improvements in searches


Short lifetime(~10⁻²⁵ s)

Decays before hadronization – Unique among the quarks!

> Access to polarization + spin correlations

Hints of new physics?

Exotic particles could decay preferentially to top quarks

01

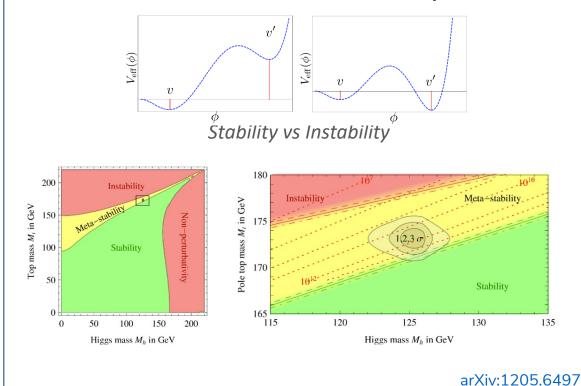
05

TOP QUARK MASS USING A DILEPTONIC INVARIANT MASS

02 MEASUREMENT OF THE POLARISATION OF W BOSONS PRODUCED IN TOP-QUARK DECAYS

03 MEASUREMENTS SENSITIVE TO B-QUARK FRAGMENTATION IN TOP PAIRS

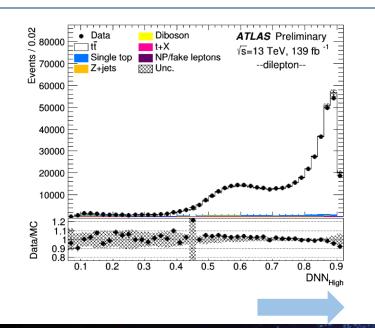
04 OBSERVABLES SENSITIVE TO COLOR RECONNECTION

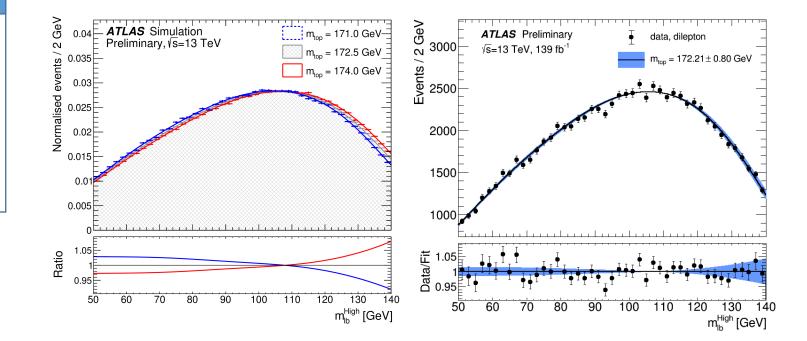

CONCLUSIONS

top mass

- ✓ Plays a role in EW vacuum stability
 - Precise measurements are needed in order to evaluate the vacuum stability

top mass measurement


- ✓ Its mass can be determined through comparison with theoretical calculations:
 - ✓ "Direct" measurements:
 - ✓ Kinematic reconstruction of variables related to the top-quark momentum.
 - \checkmark Comparison with MC calculations.
 - Typically have a high experimental precision.
 - ✓ "Indirect" measurements:
 - Measure observable(s) which have a strong dependence on m_t with data unfolding



Top quark mass using a dileptonic invariant mass

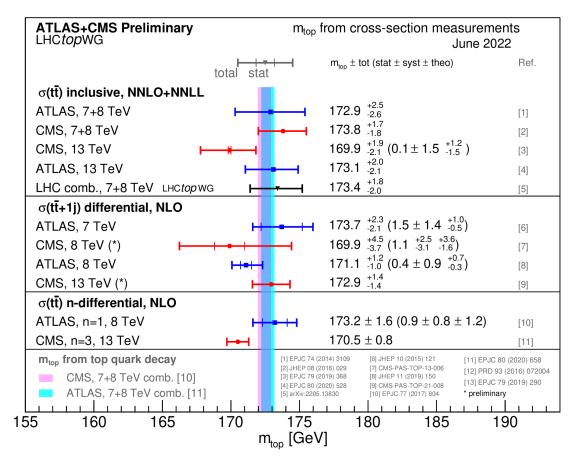
top mass

- ✓ Select top pairs dilepton channel
- ✓ Generate templates for m_{lb} distribution as a function of m_t
- ✓ DNN for event reconstruction.
- $\checkmark~$ Likelihood fit to find best value for m_t

 $m_t = 172.21 \pm 0.20(stat) \pm 0.67(syst) \pm 0.39(recoil)GeV$

Leading systematic uncertainties: JES, recoil scheme, ME matching, color reconnection

<u>Vniversitat</u>

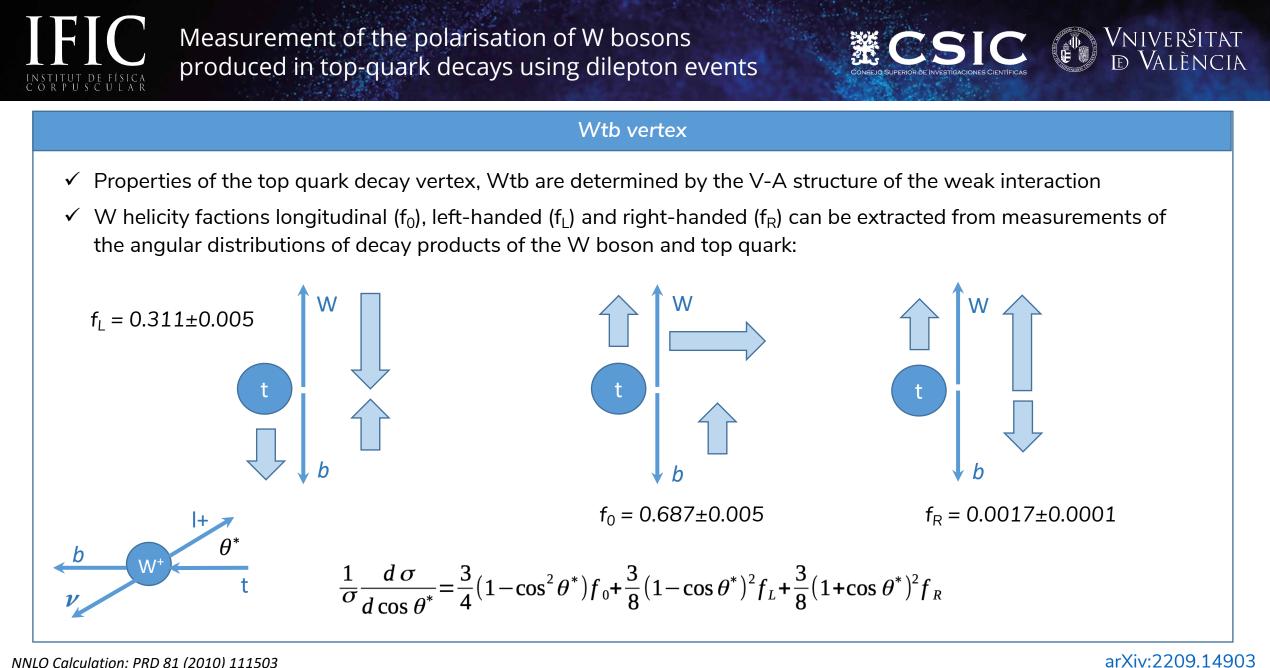


Top quark mass

TIFICAS VNIVERSITAT

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summary,√s = 7-13 TeV	November 2022
World comb. (Mar 2014) [2]		
stat	total stat	
total uncertainty	m _{top} ± total (stat± syst)	Vs Ref.
LHC comb. (Sep 2013) LHCtopWG	$173.29 \pm 0.95 (0.35 \pm 0.88)$	7 TeV [1]
World comb. (Mar 2014)	$173.34 \pm 0.76 (0.36 \pm 0.67)$	1.96-7 TeV [2]
ATLAS, I+jets	172.33±1.27 (0.75±1.02)	7 TeV [3]
ATLAS, dilepton	173.79±1.41 (0.54±1.30)	7 TeV [3]
ATLAS, all jets	1 75.1± 1.8 (1.4± 1.2)	7 TeV [4]
ATLAS, single top	172.2±2.1 (0.7±2.0)	8 TeV [5]
ATLAS, dilepton	172.99±0.85 (0.41±0.74)	8 TeV [6]
ATLAS, all jets	173.72±1.15 (0.55±1.01)	8 TeV [7]
ATLAS, I+jets	172.08±0.91 (0.39±0.82)	8 TeV [8]
ATLAS comb. (Oct 2018)	172.69 \pm 0.48 (0.25 \pm 0.41)	7+8 TeV [8]
ATLAS, leptonic invariant mass	+ 174.41± 0.81 (0.39± 0.66± 0.25)	13 TeV [9]
ATLAS, dilepton (*)	$172.63 \pm 0.79 \; (0.20 \pm 0.67 \pm 0.37)$	13 TeV [10]
CMS, I+jets	173.49±1.06 (0.43±0.97)	7 TeV [11]
CMS, dilepton	172.50±1.52 (0.43±1.46)	7 TeV [12]
CMS, all jets		7 TeV [13]
CMS, I+jets	172.35±0.51 (0.16±0.48)	8 TeV [14]
CMS, dilepton	172.82±1.23 (0.19±1.22)	8 TeV [14]
CMS, all jets	172.32±0.64 (0.25±0.59)	8 TeV [14]
CMS, single top	172.95±1.22 (0.77±0.95)	8 TeV [15]
CMS comb. (Sep 2015) HHH	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [14]
CMS, I+jets	172.25±0.63 (0.08±0.62)	13 TeV [16]
CMS, dilepton	172.33±0.70 (0.14±0.69)	13 TeV [17]
CMS, all jets	$172.34 \pm 0.73 \; (0.20 \pm 0.70)$	13 TeV [18]
CMS, single top	172.13±0.77 (0.32±0.70)	13 TeV [19]
CMS, I+jets (*)	171.77 ± 0.38	13 TeV [20]
CMS, boosted (*)	172.76±0.81 (0.22±0.78) 11 ATLAS-CONF-2013-102 I8I EPJC 79 (2019) 290	13 TeV [21]
* Preliminary	[1] ATLAS-COM-2013-102 [6] ENGL 79 (2019) 280 [2] at/wit-403.4427 [9] at/wit-209.0683 [3] ENJC 75 (2015) 330 [10] ATLAS-COM-2022-058 [4] EPJC 75 (2015) 158 [11] JHEP 12 (2012) 105 [5] ATLAS-COM-2014-055 [12] EPLC 72 (2012) 2202	[16] EPJC 77 (2017) 354 [16] EPJC 78 (2018) 891 [17] EPJC 79 (2019) 368 [18] EPJC 79 (2019) 313 [19] arXiv:2108.10407
	[6] PLB 761 (2016) 350 [13] EPLC 74 (2014) 2758 [7] JHEP 09 (2017) 118 [14] PRD 93 (2016) 072004	[20] CMS-PAS-TOP-20-008 [21] CMS-PAS-TOP-21-012
165 170 1	75 180 1	85
m _{top} [GeV]		

Summary of the ATLAS and CMS measurements from top quark decay ("direct").

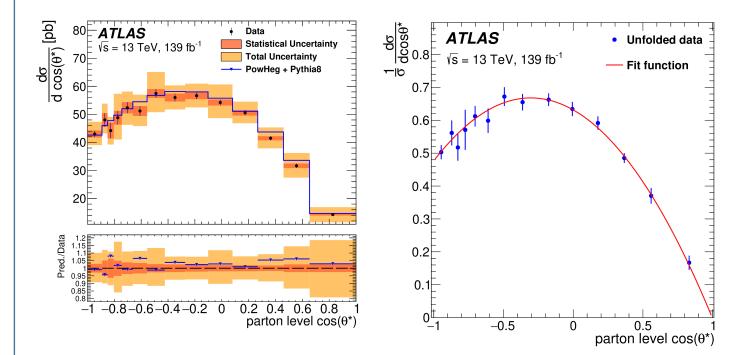

Summary of the ATLAS and CMS measurements of the top quark mass from tt production observables.

Uncertainty in combinations: ~0.5 GeV (0.3%)

ATL-PHYS-PUB-2022-050

DIS 2023

7


NNLO Calculation: PRD 81 (2010) 111503

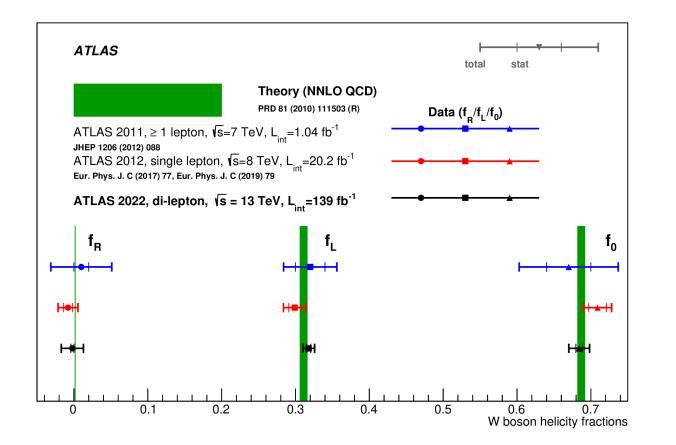
INSTITUT DE FÍSICA C O R P U S C U L A R

Measurement of the polarisation of W bosons produced in top-quark decays using dilepton events

W-boson Polarizations

- Reconstruction of top pairs (dilepton channel) performed using Neutrino Weighting (NW) method.
- ✓ Unfold detector-level cos θ* to parton level using Iterative Bayesian Unfolding (IBU) technique.
- ✓ Extract helicity fractions from a fit to the normalized differential cross-section distribution.
- ✓ Two parameter fit performed where f_L and f_R extracted from the fit. $f_0 = 1 - f_L - f_R$ imposes unitarity of fractions, and f_0 estimated post-fit.

XCS

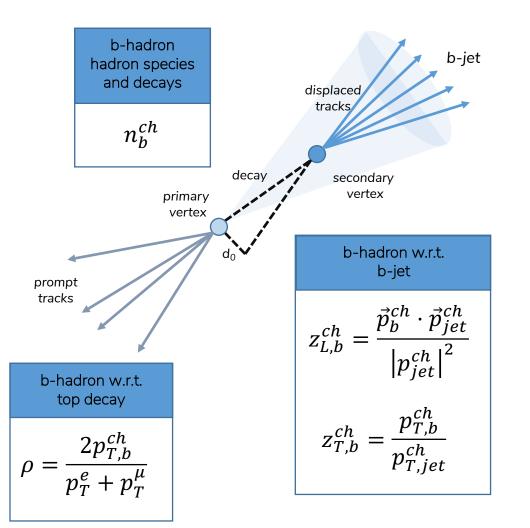

INSTITUT DE FÍSICA C O R P U S C U L A R

Measurement of the polarisation of W bosons produced in top-quark decays using dilepton events

W-boson Polarization

- ✓ All values, within uncertainties, agree with SM prediction at NNLO in QCD.
- Measurement is systematically limited (top pairs modelling and jet reconstruction are the major sources of uncertainties).

 $f_{L} = 0.318 \pm 0.008$ $f_{R} = -0.002 \pm 0.015$ $f_{0} = 0.684 \pm 0.015$

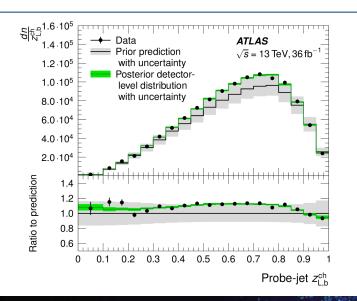

<u>VniverSit</u>at

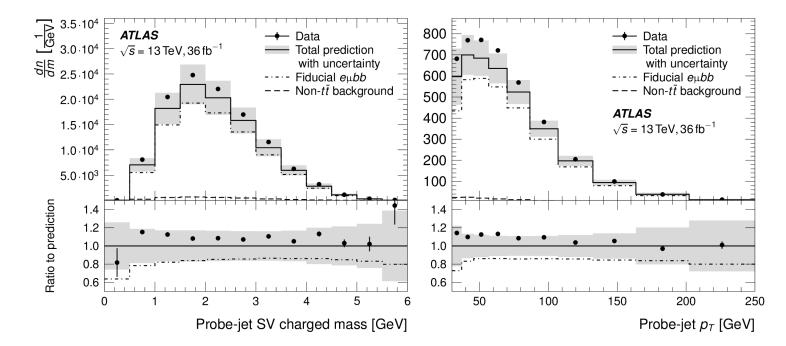
Measurements sensitive to b-quark fragmentation in top pairs

b-quark fragmentation

- Understanding b-quark fragmentation is important for many processes and physics results.
- ✓ b-jets provide clear experimental signature.
- \checkmark top pairs production are great source of b-jets:
 - ✓ Only charged particles or tracks used for bjets.
 - ✓ Lepton p_T can be used as a proxy for top quark p_T (dileptonic decay).
- Define different observables that are sensitive to b-fragmentation.

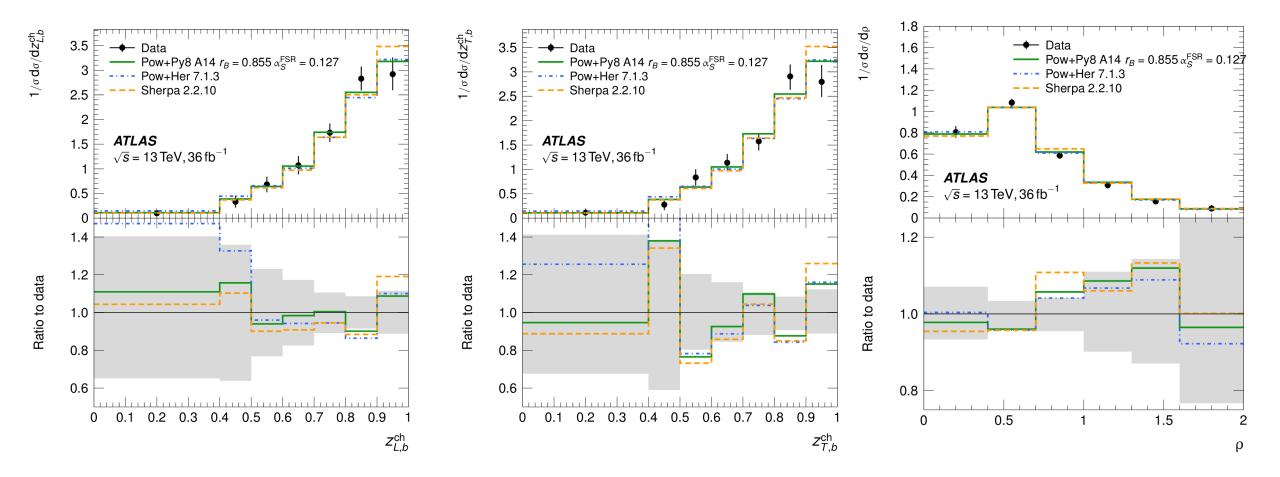
Vniver§itat d València




Measurements sensitive to b-quark fragmentation in top pairs

b-quark fragmentation

- ✓ Select top pairs dilepton channel
 - Events with exactly two jets and at least one b-tagged jet.
- ✓ b-hadron reconstruction:
 - \checkmark Use tracks matched to a jet.
 - ✓ Tracks matched to a secondary vertex.
- \checkmark Unfolding to stable particle (tracks) level.



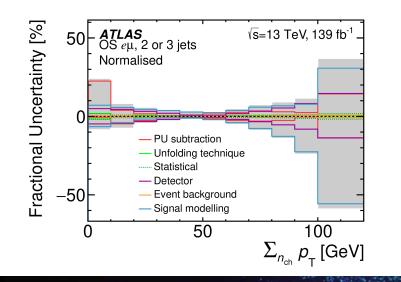
IFFIC INSTITUT DE FÍSICA C O R P U S C U L A R

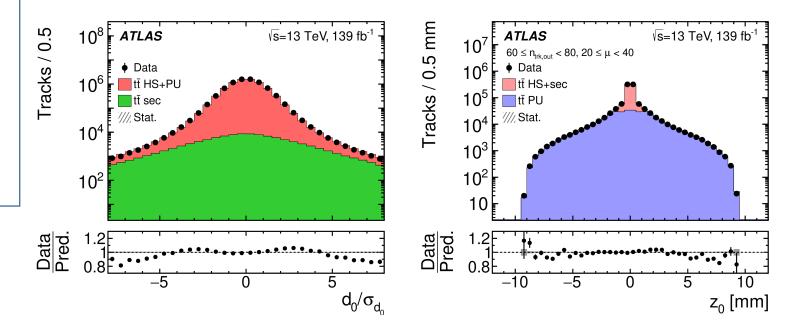
Measurements sensitive to b-quark fragmentation in top pairs

Reasonable agreement between data and prediction

DIS 2023

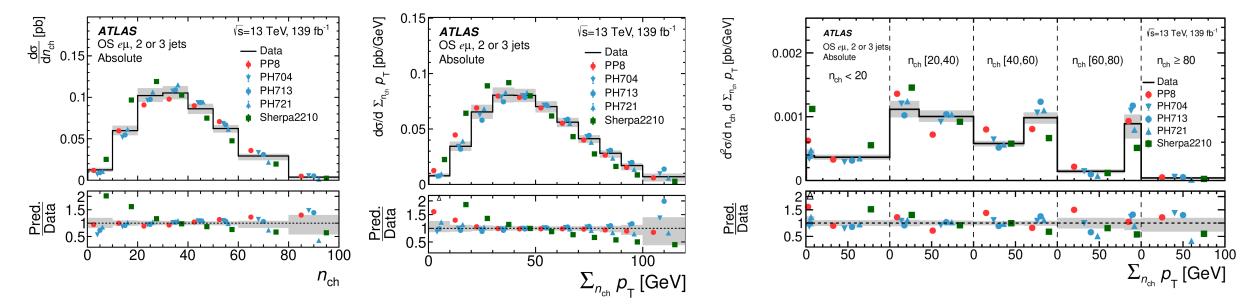
Color reconnection


- Colour reconnection addresses the problem of how the colour fields rearrange themselves after the collision.
 - ✓ Important phenomenon for Monte-Carlo generators.
 - \checkmark Not simulated from first principles.
 - ✓ Generators use leading-color approximation.
- ✓ Different color reconnection models:
 - Pythia, Herwig and Sherpa have different models, models need to be constrained from data.
- Color reconnection (CR) is a key ingredient in the quest for precise SM measurements, such as the top quark mass:
 - ✓ top quark decays take place right in the middle of the showering/hadronization region
 - ✓ quarks (and gluons) produced in the decay are subject to the CR



Color reconnection

- ✓ Select top pairs dilepton channel
- Estimate the pile-up and secondary particle tracks contamination
- ✓ Correct for the efficiency in track reconstruction
- ✓ Unfold sensitive observables to particle-level \rightarrow compare unfolded data to MC predictions


Dominant uncertainties come from pile-up tracks background and signal modeling

more details in <u>Claire Gwenlan talk</u>

Vniver§itat d València

Observables sensitive to color reconnection

Color reconnection

- None of the generator predictions describe the data in full range:
 - Reasonable agreement for Pythia and Herwig, with Herwig slightly better
 - From the Pythia models, nominal Pythia does better, but not able to exclude any CR models
- Sherpa assumes no color reconnection:
 - Sherpa predicts softer spectrum and more low multiplicities than seen in data

<u>Vniver</u>Sitat

灘CSIC

Conclusions

- Precise measurement of the top quark properties are being carried out at ATLAS from mass to polarization.
- Top quarks present are unique environment to test SM and theory predictions.
- ATLAS and LHC combined top mass measurements are getting extremely precise, with a 0.3% uncertainty achieved by the combination.
- W helicity fractions have been measured with high precision.
- Analysis sensitive to b-fragmentation and color reconnection help to a better understanding of the MC generators, which is crucial to reduce MC related uncertainties.

Thank you for your attention!