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Introduction

¢ When computing higher order corrections in QCD, IR divergent phase-space integrals of scattering
amplitudes appear in the intermediate steps of the calculation.

® In order to perform numerical integration a regularization procedure is necessary.

® There are two techniques for removing IR divergences: local subtraction and slicing/non-local
subtraction.

® This talk will focus on slicing for processes with jets.
e Theidea of the slicing method at N*LO is to define a resolution variable X such that:
1. In the region X > 0 there is 1-resolved emission, there are only N*"!LO types singularities.

2. The N*LO unresolved limits occur only at X = 0.



Slicing formalism

¢ The resolution variable can be used to split the cross-section as:

JdGNkLO — JdGNkLOH(rCMI - X) + JdaﬁkLOQ(X - cut)

¢ We can approximate the integral in the unresolved region by taking the soft and collinear limits:

JdaNkwe(rcm —X) = jda]g'k"g Oy — X) + O(r,y) = JH ® doy , — Jdag,g HOX = ro) + 0@,
e The N*LO cross-section is then:
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cut

cut

e The computation is performed by using a small but finite value of r.. .. This means that the final result

will be affected by some missing power corrections.
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N-jet resolution variable

e We want to apply the slicing formalism to processes with jets in the final state. It is then necessary to use a
resolution variable that captures the transition from N to N + 1 jets.

N
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X <r,,:2]Jetconfiguration X > r,, :3]Jet configuration
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cut cut °

e The first proposal for an N-Jet resolution variable was N-Jettiness () [Stewart, Tackmann, Waalewijn (2010)], that, in
the context of jet processes, has been applied in the NNLO computation for the production of Higgs or
vector boson Wlth 1 jet [Boughezal, Focke, Giele, Liu, Petriello (2015)][Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (2016)].

e N-Jettiness exhibits linear logarithmically enhanced power corrections, O(r,.  logr. ).

e Anew variable, k7, has been proposed and a complete formulation of NLO k7¢*-slicing has been
provided [Buonocore, Grazzini, Haag, Rottoli, Savoini (2022)]. k7.°* exhibits purely linear power corrections, O(r,,,,).



Exploring jet resolution variables

e While power corrections for N-Jettiness slicing have been studied in detail [Moult, Rothen, Stewart, Tackmann, Zhu
(2016)][Ebert, Multi Stewart, Tackmann, Vita, Zhu (2018)][Boughezal, Isgro, Petriello, (2018)][Ebert, Tackmann (2020)][Boughezal, Isgro, Petriello (2020)],
the considerations on power corrections made on k7“*are mainly based on empirical evidences.

o We would like to explicitly compute the power corrections and understand the origin of the differences
in the scaling among different variables.

e We will focus on eTe™ — 2j at NLO: in this case we do not have QCD initial-state singularities and the
results obtained can be reused for hadronic collisions.

o In this talk we will discuss and compare three jet resolution variables: yy v, k7, koK,



YN N41: definition of the variable

e For leptonic collisions, we can consider the distance among partons from the k; algorithm:

2 min(El-Z, Ejz)
d.. —
lj Q2

(1 —cos b))

e Let us consider a final state with M > N QCD partons. We run the k; clustering algorithm until N + 1
protojets are left. yy v, is defined as the minimum among the d;; of the N + 1 protojets.

YNN+1 = min{d;}

e The limit yy 5, — O corresponds to the kinematical configuration in which one of the N + 1 partons is
unresolved and thus there is an N-jet configuration.



Slicing formalism using y, 4

® The counterterm corresponding to this variable can be obtained by integrating the collinear
approximation of the real matrix element “below the cut”:

" 1 -
Brau® | Mp|" | dpruq—P, (2, €)O(r2, — y23) = — doT + finite term + e-poles + 6(r,,)
o Sl:]'

CT _ o 2
do~" = d0L0—2 Cr(2log"r,, +3logr, )
T

ut

e To compute the inclusive cross-section for e"e™ — gg the contribution coming from the soft wide-angle
has to be considered too.
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¥, 3 power corrections

e We compared the cross-section computed using y, 5 slicing (that depends on r,,,) with the exact
analytical one.

® Since the soft wide-angle contribution is not vanishing we expect a linear scaling, similar to what is
observed in heavy-quark production. This is confirmed by the numerical computation.
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¥, 3 power corrections

e We analytically computed the missing power corrections, integrating the real matrix element (without
approximation) above the cut:
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e In the x;-x, plane, the collinear limits correspond to the lines x; = 1 and x, = 1, while the soft limit occurs
in the point (x, x,) = (1,1)

e The result of the latter integral is a large expression, function of 7,,,,. This result, up to O(r,,,), is:

O(r, czut )
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Cancelled by the counterterm

o Linear power correction



k€% resolution variable

o The definition of k“* is the same as the one of y, 3, but uses the distance among partons:
. ARj . . .
di; = min(k;r, k; T) 0 AR; = An; + Ag;;

o The counterterm is the same as the one of y, ;, while the non-vanishing soft wide-angle contribution is
different, that has been computed numerically as a two-folded integral.
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kITU SR resolution variable

e We would like to understand if it is possible to define a variable that has a quadratic leading missing
power correction, like g, for initial-state singularities, that has a vanishing soft wide-angle contribution.

e We can consider the transverse momentum of the real radiation with respect to the gg axis, in the frame in
which g and g are back-to-back. We denote this variable as kITVSR.

FSR
kT

kFSR . 2(p1 ) k)(pZ ) k)
=
P1° P2

I\

N

® In this case, the soft wide-angle contribution vanishes:

2CF d¢radw1 [Q(FEW - k]ESR) — H(rczm — k]IfSR’”)] = 0, since kYESR = kiSR,||
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Comparison among the variables

As we can see, N-Jettiness has a logarithmic enhanced scaling, y, ; and k;*** have linear scaling,

has quadratic scaling.
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Comparison between 2-Jettiness and y; 5

e Weinvestigated the origin of the logarithmic enhanced contribution that is absent in y, 5 slicing. Here
we can see the different cuts imposed on the phase-space by the step function (X —r,,,).
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Cut imposed by y, ; (blue) and 2-Jettiness (orange)

In the collinear limit, we have 7, — ke, Vo3 — k2.

Both the variables impose a cut on a non-singular part

of t

ne phase-space close to the line x, = 1 — x;. That

par

- is the origin of the logarithmic enhanced term, as

we verified with an analytical analysis.

2-Jettiness suppresses a larger region of the phase-
space, since it cuts out also the regions at high rapidity;,
that are not singular.
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Variable X,

We can define a family of resolution variables that depends on a parameter b € [0, 1]

_ b . (1-b)/2
Xb—’rzyz(,3 )

The parameter b controls the dependence on the rapidity of the resolution variable, since in the
collinear limit X, ~ k¢ ~?"l. We have X, = Y>3 and X| = 17,.

aS
The counterterm associated to X, 1s: do*! = dUng—ﬂCF L+ b (2 10g2 Ve +3logr.,)
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Conclusions and outlook

e We analytically computed the power corrections of different resolution variables for eTe™ — ¢g.

® We have shown that the dependence on the rapidity of the slicing variable is responsible for the
different scaling of the power corrections.

¢  Our future goal is to extend k7 slicing at NNLO.

o The study of k7 slicing for leptonic collisions is only the first step toward the formulation of the
method for hadronic collisions, since many ingredients that will be computed for the e"e™ case can be
reused for p p scattering.
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2-Jettiness power corrections

® The expansion of the 2-Jettiness power correction, up to the linear term, is:
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