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Introduction

• When computing higher order corrections in QCD, IR divergent phase-space integrals of scattering 
amplitudes appear in the intermediate steps of the calculation.

• In order to perform numerical integration a regularization procedure is necessary.

• There are two techniques for removing IR divergences: local subtraction and slicing/non-local 
subtraction. 

• This talk will focus on slicing for processes with jets. 

• The idea of the slicing method at  is to define a resolution variable  such that: 

1. In the region  there is 1-resolved emission, there are only  types singularities.

2. The  unresolved limits occur only at .

NkLO X

X > 0 Nk−1LO

NkLO X = 0
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Slicing formalism

• The resolution variable can be used to split the cross-section as: 

• We can approximate the integral in the unresolved region by taking the soft and collinear limits:

• The  cross-section is then: 

• The computation is performed by using a small but finite value of . This means that the final result 
will be affected by some missing power corrections.

NkLO

rcut
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∫ dσNkLO = ∫ dσNkLOθ(rcut − X) + ∫ dσR
NkLOθ(X − rcut)

∫ dσNkLOθ(rcut − X) = ∫ dσsing
NkLO

θ(rcut − X) + 𝒪(rℓ
cut) = ∫ H ⊗ dσLO − ∫ dσCT

NkLOθ(X − rcut) + 𝒪(rℓ
cut)

∫ dσNkLO = ∫ H ⊗ dσLO + ∫ [dσR
Nk−1LO − dσCT

NkLO]X>rcut

+ 𝒪(rℓ
cut)



N-jet resolution variable 
• We want to apply the slicing formalism to processes with jets in the final state. It is then necessary to use a 

resolution variable that captures the transition from  to  jets.

• The first proposal for an -Jet resolution variable was -Jettiness ( ) [Stewart, Tackmann, Waalewijn (2010)], that, in 
the context of jet processes, has been applied in the NNLO computation for the production of Higgs or 
vector boson with 1 jet [Boughezal, Focke, Giele, Liu, Petriello (2015)][Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (2016)].

• -Jettiness exhibits linear logarithmically enhanced power corrections, .

• A new variable, , has been proposed and a complete formulation of NLO -slicing has been 
provided [Buonocore, Grazzini, Haag, Rottoli, Savoini (2022)].  exhibits purely linear power corrections, .

N N + 1

N N τN

N 𝒪(rcut log rcut)

kness
T kness

T
kness

T 𝒪(rcut)

 : 2 Jet configurationX < rcut  : 3 Jet configurationX > rcut
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Exploring jet resolution variables

• While power corrections for -Jettiness slicing have been studied in detail [Moult, Rothen, Stewart, Tackmann, Zhu 

(2016)][Ebert, Multi Stewart, Tackmann, Vita, Zhu (2018)][Boughezal, Isgrò, Petriello, (2018)][Ebert, Tackmann (2020)][Boughezal, Isgrò, Petriello (2020)], 
the considerations on power corrections made on are mainly based on empirical evidences. 

• We would like to explicitly compute the power corrections and understand the origin of the differences 
in the scaling among different variables.

• We will focus on  at NLO: in this case we do not have QCD initial-state singularities and the 
results obtained can be reused for hadronic collisions.

• In this talk we will discuss and compare three jet resolution variables: .

N

kness
T

e+e− → 2j

yN,N+1, kness
T , kFSR

T
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: definition of the variableyN,N+1

• For leptonic collisions, we can consider the distance among partons from the  algorithm:

• Let us consider a final state with  QCD partons. We run the  clustering algorithm until  
protojets are left.  is defined as the minimum among the  of the  protojets.

• The limit  corresponds to the kinematical configuration in which one of the  partons is 
unresolved and thus there is an -jet configuration.

kT

M > N kT N + 1
yN,N+1 dij N + 1

yN,N+1 → 0 N + 1
N
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dij =
2 min(E2

i , E2
j )

Q2
(1 − cos θij)

yN,N+1 = min{dij}



Slicing formalism using y2,3

• The counterterm corresponding to this variable can be obtained by integrating the collinear 
approximation of the real matrix element “below the cut”:

• To compute the inclusive cross-section for  the contribution coming from the soft wide-angle 
has to be considered too. 

e+e− → qq̄
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8παsμ2ϵ |ℳB |2 ∫ dϕrad
1
sij

Pqq(z, ϵ)θ(r2
cut − y2,3) = − dσCT + finite term + ϵ-poles + 𝒪(rcut)

dσCT = dσLO
αs

2π
CF (2 log2 rcut + 3 log rcut)

8παsCF |ℳB |2 ∫ dϕrad[(−T1 ⋅ T2)ω12 − T2
1 ω1 − T2

2 ω2]θ(r2
cut − y2,3) = |ℳB |2 CF

αS

2π
π2
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ω1 =
p1 ⋅ p2

(p1 ⋅ k)(p1 + p2) ⋅ k
ω2 =

p1 ⋅ p2

(p2 ⋅ k)(p1 + p2) ⋅ k
ω12 =

p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)



 power correctionsy2,3

• We compared the cross-section computed using  slicing (that depends on ) with the exact 
analytical one.

• Since the soft wide-angle contribution is not vanishing we expect a linear scaling, similar to what is 
observed in heavy-quark production. This is confirmed by the numerical computation.

y2,3 rcut
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 power correctionsy2,3

• We analytically computed the missing power corrections, integrating the real matrix element (without 
approximation) above the cut:

• In the -  plane, the collinear limits correspond to the lines  and , while the soft limit occurs 
in the point 

• The result of the latter integral is a large expression, function of . This result, up to , is: 

x1 x2 x1 = 1 x2 = 1
(x1, x2) = (1,1)

rcut 𝒪(rcut)
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dσLOCF
αs

2π ∫
1

0
dx1 ∫

1

1−x1

dx2
x2

1 + x2
2

(1 − x1)(1 − x2)
θ(y2,3 − rcut)

dσLOCF
αs

2π ( 5
4

−
π2

12
+ 3 log 2 + 3 log rcut + 2 log2 rcut + (2 log(1 + 2) − 4 2)rcut + 𝒪(r2

cut))
Cancelled by the counterterm Linear power correction 

xi =
2Ei

Q
x1 + x2 + x3 = 2



 resolution variablekness
T

• The definition of  is the same as the one of , but uses the distance among partons:

• The counterterm is the same as the one of , while the non-vanishing soft wide-angle contribution is 
different, that has been computed numerically as a two-folded integral. 

kness
T y2,3

y2,3
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dij = min(k2
i,T, k2

j,T)
ΔR2

ij

Q2
ΔR2

ij = Δη2
ij + Δϕ2

ij

∫ dϕrad {ω12[θ(ΔR2
1k − ΔR2

2k)θ(r2
cut − d2k) + θ(ΔR2

2k − ΔR2
1k)θ(r2

cut − d1k)] − ω1θ(r2
cut − d∥

1k) − ω2θ(r2
cut − d2k)}

= 2∫ dϕrad {ω1θ(ΔR2
1k − ΔR2

2k)[θ(r2
cut − d2k) − θ(r2

cut − d1k)] + ω1[θ(r2
cut − d1k) − θ(r2

cut − d∥
1k)]} Finite in  

dimensions
d = 4

• The numerical application of the slicing method 
shows that the leading missing power corrections are 
linear.



 resolution variablekFSR
T

• We would like to understand if it is possible to define a variable that has a quadratic leading missing 
power correction, like  for initial-state singularities, that has a vanishing soft wide-angle contribution.

• We can consider the transverse momentum of the real radiation with respect to the  axis, in the frame in 
which  and  are back-to-back. We denote this variable as .

qT

qq̄
q q̄ kFSR

T
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qq̄

g
kFSR

T

• In this case, the soft wide-angle contribution vanishes:

2CF ∫ dϕradω1[θ(r2
cut − kFSR

T ) − θ(r2
cut − kFSR,∥

T )] = 0, since kFSR
T = kFSR,∥

T

kFSR
T =

2(p1 ⋅ k)(p2 ⋅ k)
p1 ⋅ p2



Comparison among the variables

• As we can see, -Jettiness has a logarithmic enhanced scaling,  and  have linear scaling,  
has quadratic scaling.

N y2,3 kness
T kFSR

T
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Comparison between 2-Jettiness and y2,3

• We investigated the origin of the logarithmic enhanced contribution that is absent in  slicing. Here 
we can see the different cuts imposed on the phase-space by the step function . 

y2,3
θ(X − rcut)
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Cut imposed by  (blue) and 2-Jettiness (orange) y2,3

• In the collinear limit, we have , .

• Both the variables impose a cut on a non-singular part 
of the phase-space close to the line . That 
part is the origin of the logarithmic enhanced term, as 
we verified with an analytical analysis.  

• 2-Jettiness suppresses a larger region of the phase-
space, since it cuts out also the regions at high rapidity, 
that are not singular.

τ2 → kT e−|η| y2,3 → k2
T

x2 = 1 − x1
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Variable Xb

• We can define a family of resolution variables that depends on a parameter 

• The parameter  controls the dependence on the rapidity of the resolution variable, since in the 
collinear limit . We have  and .

• The counterterm associated to  is: 

b ∈ [0,1]

b
Xb ∼ kTe−b|η| X0 = y2,3 X1 = τ2

Xb
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Xb = τb
2 y(1−b)/2

2,3

Cut imposed by  for different 
values of .

Xb > rcut
b

Power correction scaling for different values of .b

10−4 10−2

rcut

dσCT = dσLO
αs

2π
CF

1
1 + b

(2 log2 rcut + 3 log rcut)



Conclusions and outlook

• We analytically computed the power corrections of different resolution variables for . 

• We have shown that the dependence on the rapidity of the slicing variable is responsible for the 
different scaling of the power corrections. 

• Our future goal is to extend  slicing at NNLO.

• The study of  slicing for leptonic collisions is only the first step toward the formulation of the 
method for hadronic collisions, since many ingredients that will be computed for the  case can be 
reused for  scattering. 

e+e− → qq̄

kness
T

kness
T

e+e−

p p
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Backup Slides



2-Jettiness power corrections

• The expansion of the 2-Jettiness power correction, up to the linear term, is:
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2 rcut log rcut + 7 rcut + 𝒪(r2
cut)


