

Study of low-energy e^+e^- annihilation into hadrons at BABAR

David Norvil Brown, **Ogden College of Science & Engineering Western Kentucky University On behalf of the BABAR Collaboration**

DIS2023: XXX International Workshop on Deep Inelastic Scattering and Related Subjects

- Motivation
- The BABAR Experiment
- Study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ using ISR
- Studies of $e^+e^- \rightarrow KK\pi\pi\pi$ modes using ISR

Charge conjugation implied throughout

Outline of the Talk

PRD **104** 112003 (2021)

arXiv:2207.10340(2022) accepted for publication, PRD

amount. Characterize with anomalous magnetic moment:

 $a_l =$

For the electron, theory and experiment agree to great precision

For the muon, they are in tension, which is the puzzle

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

- The magnetic dipole moment for Dirac particles can be written $\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$
 - The Dirac equation predicts g = 2 exactly
- Corrections from higher order processes cause g to differ from 2 by a small

$$=\frac{1}{2}(g_l-2)$$

From Quantum Electrodynam Leading Order Hadronic Vacuu **NLO Hadronic Vacuum Polariza** Hadronic Light by Light Weak Interactions a_{μ}^{theory} $a_{\mu}^{experiment}$ $\Delta a_{\mu} = a_{\mu}^{experiment} - a_{\mu}^{theory}$

DHMZ: Eur. Phys. J. C(2020) 80:241

Motivation: Status of a_{μ} - "before"

ics (QED)	11 658 471.895	±0.008
um Polarization	694.0	±4.0
ation	-9.9	±0.1
	10.5	±2.6
	15.4	±0.1
	11 659 183.1	±4.8
ucl Part Sci 2012 62:237-64	11 659 209.1	±6.3
	3.3 <i>σ</i> 26.000	±7.900
		10

units of 10^{-10}

- at New Physics (NP)
- Rich muon program at Fermilab and J-PARC addressing the experimental side
- Other experiments, including BABAR, provide inputs for the QCD runs into difficulty

Longstanding tension between experiment and theory could be a hint

theoretical calculations, particularly at low energies where perturbative

- Primarily designed for study of **CP-violation in B meson decays**
- Quality and general-purpose design make it suitable for a large variety of studies

NIM A479,1 (2002), update: NIM A729, 615 (2013)

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

The **BABAR** Detector

- Asymmetric-energy beams for boost
- Modern/state of the art detector
- 5 cylindrical subdetector systems with a 40layer drift chamber + 5-layer vertex detector
- Excellent electromagnetic calorimetry
- Multiple measurements for particle identification

The BABAR Running Era

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

This analysis uses 468 fb⁻¹ of data

- First collisions with BABAR ٠ 1999
- Final data taken 12:43 p.m., April 7, 2008

- Photon emitted by electron or positron Initial State Radiation (ISR)
 - Carries away energy allows "scan" of energies for remaining system
 - Easily identified back-to-back topology
 - High acceptance, even at threshold
 - Exploited heavily at BABAR for large number of hadronic cross sections

ISR Method

Calculate via dispersion relation integral. Lowest CM energies contribute most

Below that, rely on experimental input. BABAR provides significant inputs.

BABAR ISR Contributions

Study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

From previous measurements, we know this mode contributes approximately 7% to $a_{\mu}^{HAD LO}$, second only to $e^+e^- \rightarrow \pi^+\pi^-$

almost five times the relative uncertainty on the two pion mode

cross-experiment check

PRD **104** 112003 (2021)

- The relative uncertainty on the three pion mode is over 3%, which is
- Important to improve the measurement of $a_{\mu}^{e^+e^- \rightarrow \pi^+\pi^-\pi^0}$.
- Measure resonant substructure both for QCD knowledge and as

- Require two quality opposite-charge tracks not identified as kaons
- Require one photon with energy above 3 GeV, assign as γ_{LSR}
- Require a pair of photons to have invariant mass consistent with π^0 mass
 - Reject event if γ_{ISR} meets this criterion (suppress background from $e^+e^- \rightarrow q\bar{q}$ 4000 ents/(10 MeV/c²) 2000 0.9 0.80.7 $M_{3\pi}$ (GeV/c²)
- $e^+e^- \rightarrow \tau^+\tau^$ for scaling and subtraction. Most significant is $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma_{ISR}$
- Reject event if $M_{\pi\gamma_{ISR}} > 1.5 \ {\rm GeV/c^2}$ (suppress background from Major remaining backgrounds studied in detail with special selection criteria

Study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

PRD **104** 112003 (2021)

We unfold detector efficiency effects and use four models to study the 3π spectrum. Extract $P_V = \Gamma(V \to e^+ e^-) \mathscr{B}(V \to \pi^+ \pi^- \pi^0)$

$$\begin{split} P_{\omega} &= (0.5698 \pm 0.0031 \pm 0.0082) \text{ keV} \\ P_{\phi} &= (0.1841 \pm 0.0021 \pm 0.0080) \text{ keV} \\ \mathscr{B}(\rho \to 3\pi) &= (0.88 \pm 0.23 \pm 0.30) \times 10^{-4} \\ \varphi_{\rho} &= -(99 \pm 9 \pm 15)^{\circ} \\ P_{J/\psi} &= (0.1248 \pm 0.0019 \pm 0.0026) \text{ keV} \end{split}$$

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

Study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

4000

3000

2000

1000

1.5

Events/(0.1 GeV/c²)

PRD **104** 112003 (2021)

$M_{3\pi} \text{ GeV}/c^2$	$a_{\mu}^{3\pi} imes 10^{10}$
0.62–1.10	$42.91 \pm 0.14 \pm 0.55 \pm 0.09$
1.10-2.00	$2.95 \pm 0.03 \pm 0.16$
<2.00	$45.86 \pm 0.14 \pm 0.58$
<1.8 [1]	$46.21 \pm 0.40 \pm 1.40$
<1.97 [49]	46.74 ± 0.94
<2 [50]	44.32 ± 1.48
<1.8 [51]	$46.2\pm0.6\pm0.6$

Study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

PRD 104 112003 (2021)

Using measured cross section from threshold to 2.0 GeV $a_{\mu}^{e^+e^- \to \pi^+\pi^-\pi^0} = (45.86 \pm 0.14 \pm 0.58) \times 10^{-10}$

Comparable to previous measurements but with higher precision

Effect	Uncertainty (%)
Luminosity	0.4
Radiative correction	0.5
Detection efficiency	1.1
MC statistics	0.15
Background subtraction	0.073
Gaussian smearing	0.0007
Lorentzian smearing	0.003
Unfolding procedure	0.045
Total	1.3

Was over 3% before this study

reconstructed as a pair of opposite-charge tracks with a displaced vertex via its decay $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$

identified as an isolated energy cluster in the calorimeter, shape not consistent with a photon. Validated via:

 $e^+e^- \rightarrow \gamma \phi \rightarrow \gamma K^0_S K^0_L$

PRD 89 092002 (2014)

identified via standard charged-particle PID system utilizing specific ionization, timing, Čerenkov radiation, and calorimetry

Modes With Kaons

- Only $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\pi^0$ studied previously. Most of these modes not accounted for in $a_{\mu}^{Had LO}$
- Require 2 or 4 good charged tracks from interaction point
- Use constrained fit on each candidate mode. Use tight χ^2 cut to define signal region

arXiv:2207.10340(2022) accepted, PRD

Reconstruction efficiency as a function of invariant mass

Measured cross-sections for each mode

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

arXiv:2207.10340(2022) accepted, PRD

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

arXiv:2207.10340(2022) accepted, PRD

Con Prel	liminary		
Measured	Measured	J/ψ or $\psi(2S)$ Branching	Fraction (10^{-})
Quantity	Value (eV)	Derived, this work	PDG <u>30</u>
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^+ K^- \pi^0 \pi^0 \pi^0}$	$8.9 \pm 1.3 \pm 0.9$	$1.6\ \pm 0.2\ \pm 0.2$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to \eta K^+ K^-} \cdot B_{\eta \to \pi^0 \pi^0 \pi^0}$	$1.55{\pm}0.51{\pm}0.16$	$0.85{\pm}0.28{\pm}0.09$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to \phi\eta} \cdot B_{\phi \to K^+K^-} \cdot B_{\eta \to \pi^0\pi^0\pi^0}$	$0.64{\pm}0.26{\pm}0.06$	$0.72{\pm}0.29{\pm}0.07$	$0.74{\pm}0.08$
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^{*+}K^{*-}\pi^0} \cdot B_{K^{*+} \to K^+\pi^0} \cdot B_{K^{*-} \to K^-\pi^0}$	$6.9\ \pm 1.2\ \pm 0.7$	$5.0\ \pm 0.9\ \pm 0.5$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to K^+ K^- \pi^0 \pi^0 \pi^0}$	$1.54{\pm}0.63{\pm}0.15$	$0.66{\pm}0.27{\pm}0.07$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to J/\psi\pi^0\pi^0} \cdot B_{J/\psi \to K^+K^-\pi^0}$	$1.31{\pm}0.35{\pm}0.13$	$3.1 \pm 0.8 \pm 0.3$	$2.88 {\pm} 0.13$
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to \eta K^+ K^-} \cdot B_{\eta \to \pi^0 \pi^0 \pi^0}$	${<}0.\ 2$ at 90% C.L.	<0.25 at 90% C.L.	no entry
$\frac{\Gamma_{ee}^{\psi(2S)}}{\Gamma_{ee}} \cdot B_{\psi(2S) \to K^{*+}K^{*-}\pi^0} \cdot B_{K^{*+} \to K^+\pi^0} \cdot B_{K^{*-} \to K^-\pi^0}$	$0.94{\pm}0.45{\pm}0.10$	$1.6\ \pm 0.8\ \pm 0.2$	no entry
$\Gamma^{J/\psi}_{ee} \cdot B_{J/\psi \to K^0_S K^{\pm} \pi^{\mp} \pi^0 \pi^0}$	$29.3 \pm 2.6 \pm 2.9$	$5.3 \pm 0.5 \pm 0.5$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^{\star} \pm K^{\mp} \pi^0 \pi^0} \cdot B_{K^{\star} \pm \to K^0 \pi^{\pm}} \cdot B_{K^0 \to K^0_S}$	$2.89{\pm}0.52{\pm}0.28$	$2.0\ \pm 0.4\ \pm 0.2$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^0 K^{*0} \pi^0 \pi^0} \cdot B_{K^{*0} \to K^{\pm} \pi^{\mp}} \cdot B_{K^0 \to K^0_S}$	$3.73 {\pm} 0.53 {\pm} 0.37$	$2.7\ \pm 0.4\ \pm 0.3$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^0_S K^{\pm} \rho^{\mp} \pi^0}$	$16.0 \pm 4.1 \pm 1.6$	$2.9\ \pm 0.7\ \pm 0.3$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to K^0_S K^\pm \pi^\mp \pi^0 \pi^0}$	$4.0\ \pm 1.4\ \pm 0.4$	$1.7\ \pm 0.6\ \pm 0.2$	no entry
$\Gamma^{\psi(2S)}_{ee} \cdot B_{\psi(2S) \to J/\psi\pi^0\pi^0} \cdot B_{J/\psi \to K^0_S K^{\pm}\pi^{\mp}}$	$2.36{\pm}0.59{\pm}0.24$	$5.5\ \pm 1.4\ \pm 0.6$	5.6 ± 0.5
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to K^* \pm K^{\mp} \pi^0 \pi^0} \cdot B_{K^* \pm \to K^0 \pi^{\pm}} \cdot B_{K^0 \to K^0_S}$	$0.54{\pm}0.22{\pm}0.05$	$0.92{\pm}0.37{\pm}0.09$	no entry
$\Gamma^{\psi(2S)}_{ee} \cdot B_{\psi(2S) \to K^0 K^{*0} \pi^0 \pi^0} \cdot B_{K^{*0} \to K^{\pm} \pi^{\mp}} \cdot B_{K^0 \to K^0_S}$	$0.47{\pm}0.19{\pm}0.05$	$0.81{\pm}0.32{\pm}0.08$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to K_S^0 K^{\pm} \rho^{\mp} \pi^0}$	${<}1.6$ at 90% C.L.	${<}0.6$ at 90% C.L.	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^0_S K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}}$	$34.6 \pm 1.4 \pm 1.8$	$6.2\ \pm 0.2\ \pm 0.4$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^{\star} \pm K^{\star 0} \pi^{\mp}} \cdot B_{K^{\star} \pm \to K^{0} \pi^{\pm}} \cdot B_{K^{\star 0} \to K^{\pm} \pi^{\mp}} \cdot B_{K^{0} \to K^{0} S}$	$5.9\ \pm 1.0\ \pm 0.6$	$8.5 \pm 1.5 \pm 0.9$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^* \pm K^{\mp} \pi^+ \pi^-} \cdot B_{K^* \pm \to K^0 \pi^{\pm}} \cdot B_{K^0 \to K^0_S}$	$6.2\ \pm 2.1\ \pm 0.6$	$4.4\ \pm 1.5\ \pm 0.4$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^0 K^{*0} \pi^+ \pi^-} \cdot B_{K^{*0} \to K^\pm \pi^\mp} \cdot B_{K^0 \to K^0_{S}}$	$6.3 \pm 2.1 \pm 0.6$	$4.5 \ \pm 1.5 \ \pm 0.5$	no entry
$\Gamma_{ee}^{J/\psi} \cdot B_{J/\psi \to K^0_S K^{\pm} \pi^{\mp} \rho^0}$	$17.3 \pm 2.1 \pm 1.7$	$3.1 \pm 0.4 \pm 0.3$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to K^0_S K^\pm \pi^\pm \pi^+ \pi^-}$	$5.1\ \pm 0.7\ \pm 0.4$	$2.2\ \pm 0.3\ \pm 0.2$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot B_{\psi(2S) \to J/\psi\pi^{+}\pi^{-}} \cdot B_{J/\psi \to K_{c}^{0}K^{\pm}\pi^{\mp}}$	$4.14{\pm}0.55{\pm}0.29$	$5.1 \pm 0.7 \pm 0.1$	5.6 ± 0.5
$\Gamma^{\psi(2S)}_{ee} \cdot B_{\psi(2S) \to K^0_S K^{\pm} \pi^{\mp} \rho^0}$	${<}1.6$ at 90% C.L.	${<}0.6$ at 90% C.L.	no entry

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

arXiv:2207.10340(2022) accepted, PRD

Thorough study of substructure in J/ψ region

First measurements for many modes.

- Physics (NP)
- BABAR results provide important inputs to the a_{μ} calculation that, along with new measurements from CMD-3 and others, may help pin down better knowledge of the muon magnetic moment and the potential for NP
- We have presented a study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ via ISR and reduced the uncertainty PRD 104 112003 (2021) on its contribution to a_{μ} by greater than a factor of 2
- We presented first measurements of cross sections and substructure associated with select $e^+e^- \rightarrow 2K3\pi$ modes, which may help improve knowledge of the hadronic arXiv:2207.10340(2022) contributions to a_{μ} accepted for publication, PRD
- lacksquare

• The a_{μ} puzzle is important to address given the potential for a gateway to New

15 years after end of data taking, BABAR continues to produce important results

Low-energy e^+e^- annihilations at *BABAR* - Brown, David

Thank you!