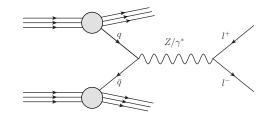


Precision calculations for Drell-Yan type observables

Thomas Gehrmann

Universität Zürich


DIS 2023, Michigan State University, 27.3.-31.3.2023

European Research Council Established by the European Commission

Drell-Yan process

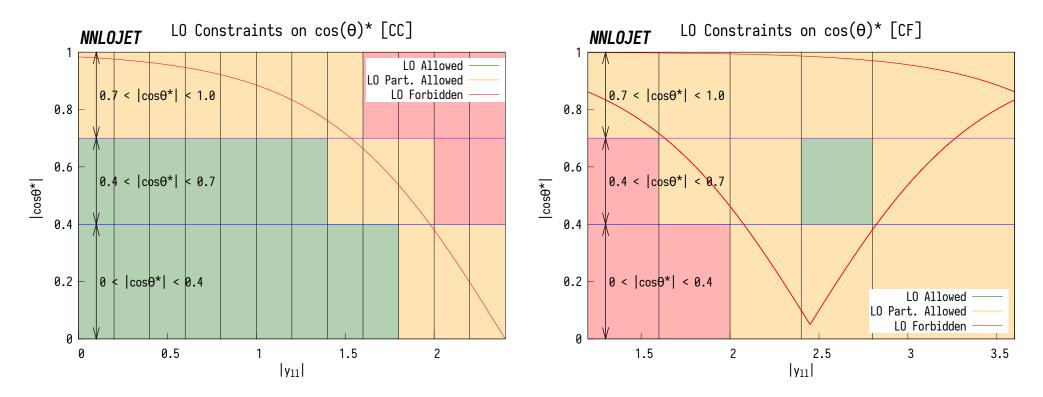
- Drell-Yan lepton pair (neutral-current or charged-current) production
 - Benchmark observable: multi-differential measurements
 - Precision measurements of EW parameters and parton distributions
- Standard Model theory well understood
 - NLO EW [C.Carloni Calame, G.Motagna, A.Nicrosini, A.Vicini; S.Dittmaier, M.Huber]
 - NNLO QCD (total cross section to N3LO QCD and NNLO QCD+EW) [K.Melnikov, F.Petriello; S.Catani, L.Cieri, G.Ferrera, D.de Florian, M.Grazzini; C.Duhr, F.Dulat, B.Mistlberger; S.Dittmaier, A.Huss, C.Schwinn; R.Bonciani, F.Buccioni, N.Rana, I.Triscari, A.Vicini]
 - transverse momentum resummation to N3LL QCD [W.Bizon, P.F.Monni, E.Re, L.Rottoli, P.Torrielli]
- Precision Tools: FEWZ, DYNNLO, DYturbo, POWHEG, ...

• Lepton pair production: EW precision observable

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{ll}\mathrm{d}y_{ll}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{ll}s}\sum_q P_q(\cos\theta^*) \left[f_q(x_1,Q^2)f_{\bar{q}}(x_2,Q^2) + (q\leftrightarrow\bar{q})\right]$$

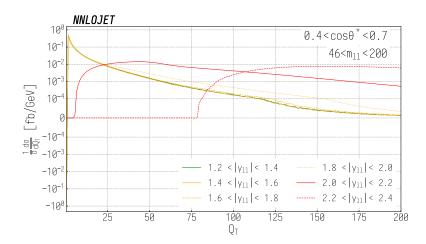
• ATLAS 8 TeV measurement [1710.05167]

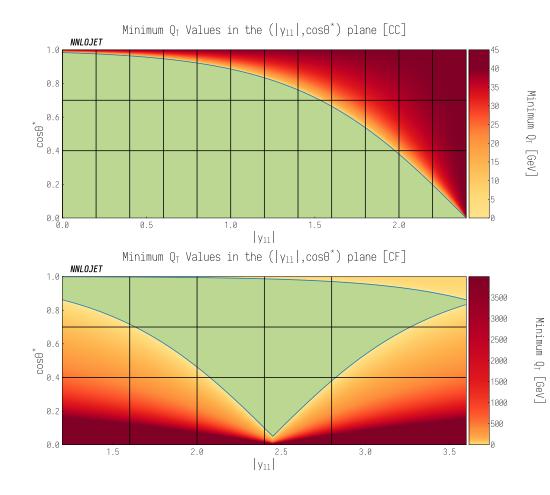
Observable	Central-Central	Central-Forward	lepton plane
$m_{ll} \; [{ m GeV}]$	[46, 66, 80, 91, 102, 116, 150, 200]	[66,80,91,102,116,150]	k_1
$ y_{ll} $	[0,0.2,0.4,0.6,0.8,1,1.2,	[1.2, 1.6, 2, 2.4, 2.8, 3.6]	$y \\ \uparrow \qquad \theta$
$\cos heta^*$	1.4, 1.6, 1.8, 2, 2.2, 2.4] [-1, -0.7, -0.4, 0, 0.4, 0.7, 1]	$\left[-1, -0.7, -0.4, 0, 0.4, 0.7, 1\right]$	$z \leftarrow \gamma$
	[-1, -0.1, -0.4, 0, 0.4, 0.1, 1]		$x - p_1 - p_2$
Total Bin Count:	504	150	hadron plane

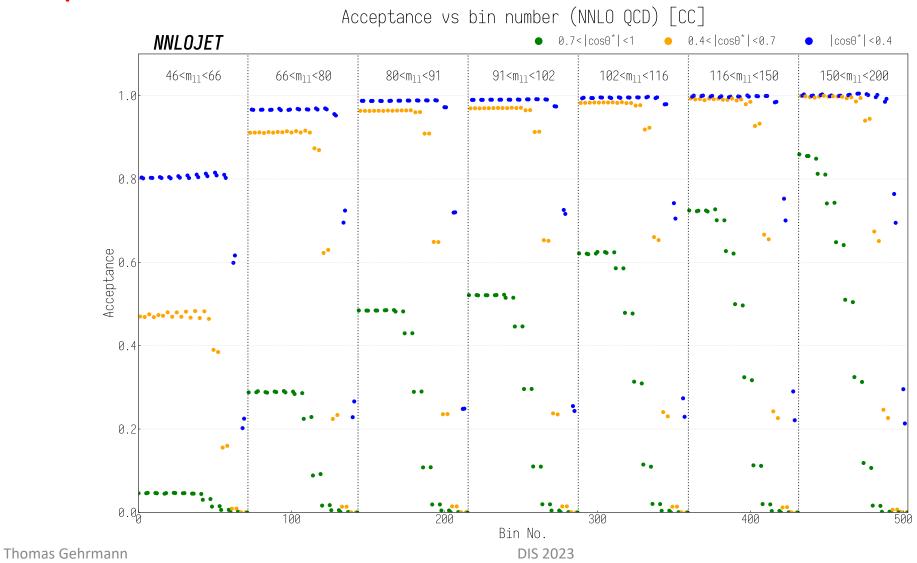

• Measured with fiducial event selection cuts (on single leptons)

Central-Central	Central-Forward	
$p_T^l > 20 { m ~GeV}$	$p_{T,F}^l > 20 \text{ GeV} \qquad p_{T,C}^l > 25 \text{ GeV}$	
$ y^l < 2.4$	$2.5 < y_F^l < 4.9 \qquad y_C^l < 2.4$	
$46~{\rm GeV} < m_{ll} < ~200~{\rm GeV}$	$66~{\rm GeV} < m_{ll} < ~150~{\rm GeV}$	

• Fiducial cuts influence acceptances in triple-differential bins

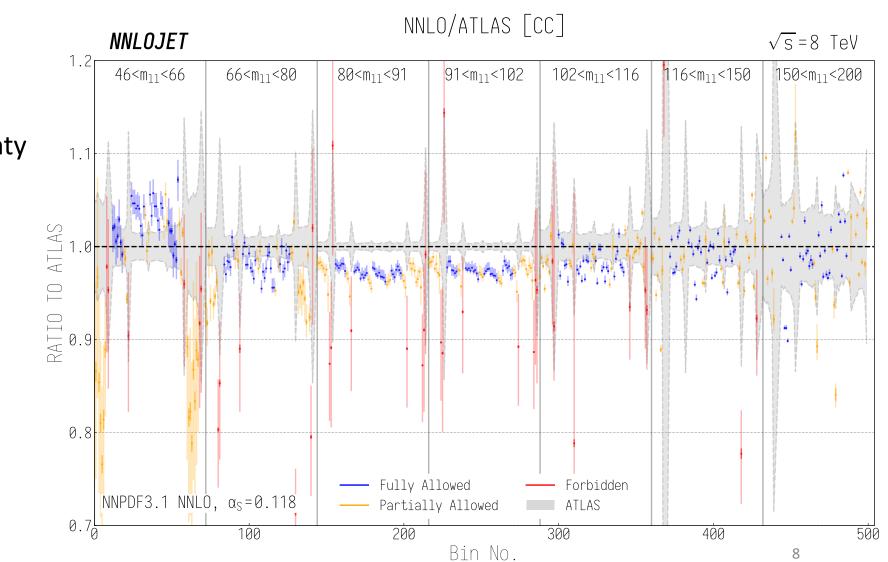

• Leading order: fiducial cuts intersect bin definitions


[A.Gehrmann-De Ridder, E.W.N.Glover, A.Huss, C.Preuss, D.Walker, TG]



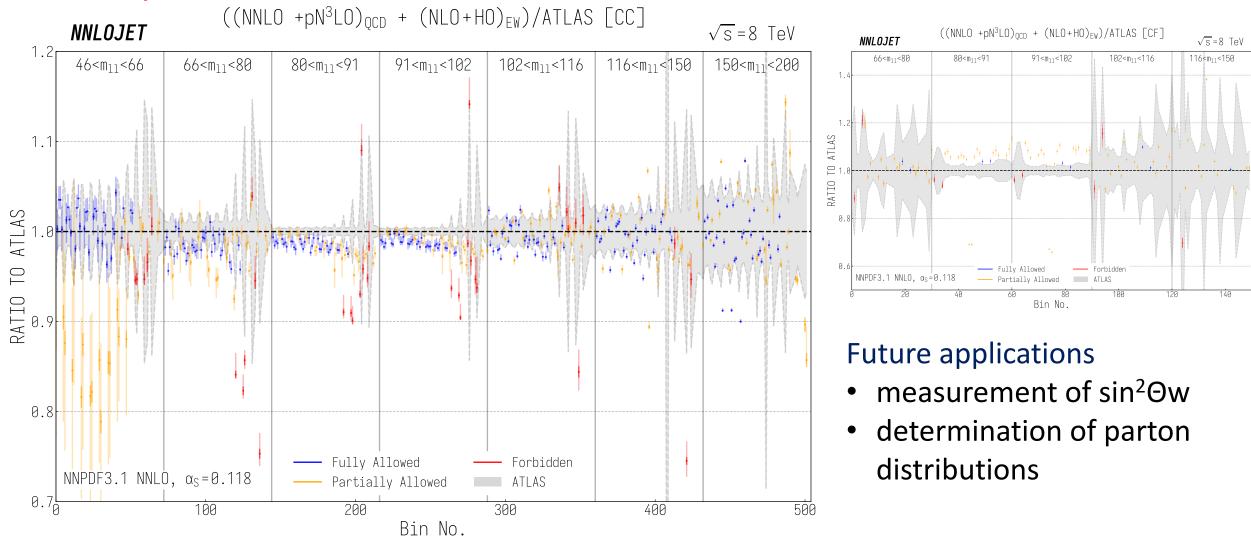
DIS 2023

- Leading-order forbidden bins
 - require finite Q_T of lepton pair
 - shown here: symmetric lepton pair
- → prediction starts only at NLO
 - lower accuracy
 - potential perturbative instabilities



In forbidden bins

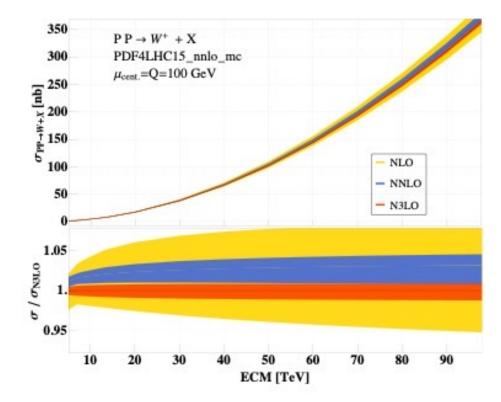
- large theory uncertainty
- poor agreement with data



Forbidden bins at leading order

- similar kinematics to distribution of lepton pairs
- O(α_s³) corrections (Drell-Yan N³LO) obtained from V+jet at NNLO [MCFM: T.Neumann, J.Campbell; NNLOJET: A.Gehrmann-De Ridder, N.Glover, A.Huss, T.Morgan, D.Walker, TG]
 - replace jet requirement by (small) Q_T cut
 - numerical convergence at small Q_T challenging

State-of-the-art theory prediction


- QCD NNLO (α_s^2) plus N3LO (α_s^3) in LO-forbidden bins
- combined with (NLO+HO) EW corrections [C.Carloni Calame, G.Motagna, A.Nicrosini, A.Vicini]

Towards full N3LO in Drell-Yan observables

Inclusive coefficient functions (total cross section) at N3LO

- computed analytically
 - three-loop form factors
 - inclusive phase space up to triple emission
 - 100s of loop and phase-space master integrals
- Results
 - virtual photon exchange [C.Duhr, F.Dulat, B.Mistlberger]
 - charged-current Drell-Yan: W[±] production [C.Duhr, F.Dulat, B.Mistlberger]
 - neutral-current Drell-Yan: γ^{*}/Z⁰ production
 [C.Duhr, B.Mistlberger]

Towards full N3LO in Drell-Yan observables

Differential distributions at N3LO

- parton-level implementation of all V+jet processes at NNLO
- combined with three-loop virtual corrections (form factor)
- subtraction scheme for handling of infrared-singular contributions

Subtraction methods applicable at N3LO

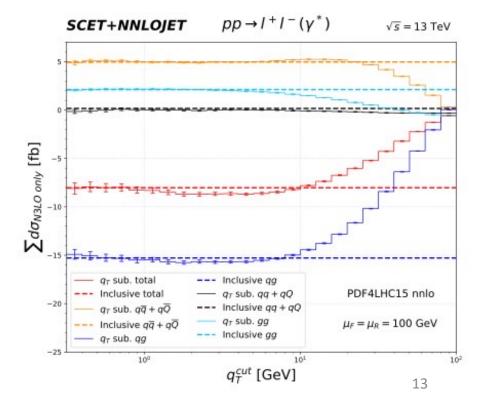
• Projection to Born [M.Cacciari, F.Dreyer, A.Karlberg, G.Salam, G.Zanderighi]

$$\frac{d\sigma_X^{N3LO}}{dO} = \frac{d\sigma_{X+j}^{NNLO}}{dO} - \frac{d\sigma_{X+j}^{NNLO}}{dO_B} + \frac{d\sigma_X^{N3LO, incl}}{dO_B}$$

• **q**_T **subtraction** [S.Catani, M.Grazzini]

$$\frac{d\sigma_X^{N3LO}}{dO} = \mathcal{H}_{N3LO} \otimes \frac{d\sigma_X^{LO}}{dO} + \left[\int_{q_{T,X}} \frac{d\sigma_{X+j}^{NNLO}}{dO} - \frac{d\sigma_{X,CT}^{NNLO}}{dO} (q_T) \right]$$

Towards full N3LO in Drell-Yan observables

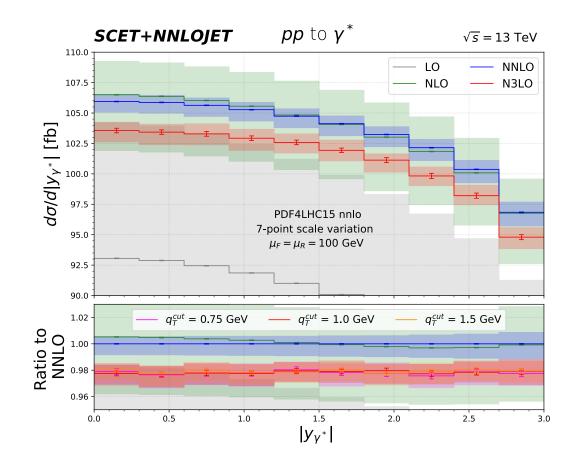

NNLOJET implementation of Drell-Yan processes at N3LO

[X.Chen, E.W.N.Glover, A.Huss, T.Z.Yang, H.X.Zhu, TG]

- based on V+jet at NNLO
- using antenna subtraction for infrared subtraction at NNLO

Genuine N3LO singularities: q_T subtraction

- obtain q_T counterterm from expansion of N3LL q_T resummation to $O(\alpha_s^{-3})$
- ingredients: three-loop soft and beam functions [Y.Li, H.X.Zhu; M.Ebert, B.Mistlberger, G.Vita; M.X.Luo, H.X.Zhu, T.Z.Yang, Y.J.Zhu]
- check: independence on q_{T,cut} slicing parameter
- check: reproduce inclusive coefficient functions (no ingredients or methodology in common!)

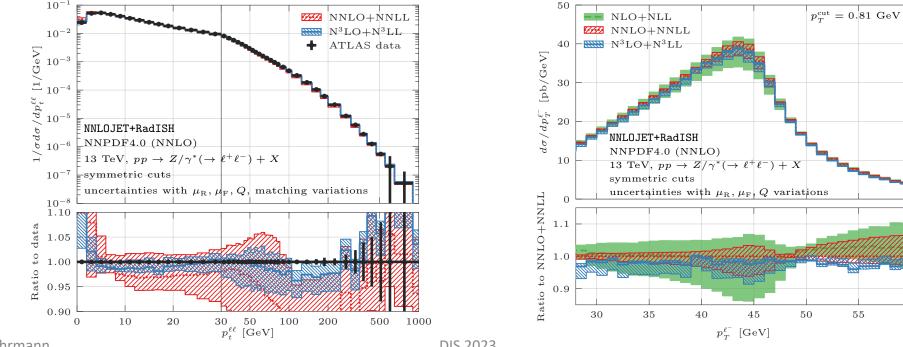

N3LO in Drell-Yan observables

NNLOJET implementation of Drell-Yan processes at N3LO

[X.Chen, E.W.N.Glover, A.Huss, T.Z.Yang, H.X.Zhu, TG]

Rapidity distribution of lepton pair

- N3LO corrections uniform in y
- same size as inclusive N3LO K-factor
- N3LO outside NNLO scale uncertainty
- scale uncertainty remains at 1% level
- still: inclusive in lepton kinematics

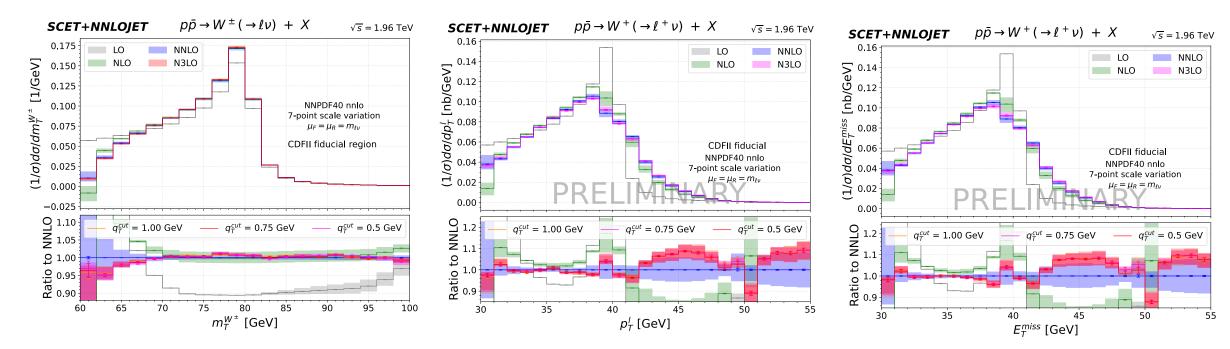


N3LO in Drell-Yan observables

Matching of N3LO with N3LL resummation

[X.Chen, E.W.N.Glover, A.Huss, P.F.Monni, E.Re, L.Rottoli, P.Torrielli, TG]

- resummation in momentum space (RadISH)
- fiducial cross sections: lepton pair and single lepton distributions in NC Drell-Yan process
- improved perturbative convergence: uncertainty on NNLO+NNLL larger than NNLO-only


60

N3LO in Drell-Yan observables

Normalized fiducial distributions in W production

[X.Chen, E.W.N.Glover, A.Huss, T.Z.Yang, H.X.Zhu, TG]

- relevant for W mass extraction (CDF II, future LHC measurements)
- N3LO corrections for CDFII kinematics flat in m_T , but non-trivial shape in p_T^{-1} , E_T^{-miss}

DIS 2023

Summary

- Drell-Yan process enables broad range of precision studies
- Complex interplay between observable definitions and fiducial cuts
- Demands ultimate per-cent level precision on fiducial distributions
 - N3LO fixed-order, matched on N3LL resummation
 - combined with higher-order electroweak corrections
- First results, enabled by important computational advances
 - N3LO corrections uniform in inclusive observables
 - non-trivial shape deformations for some fiducial distributions
- Preparing for LHC phenomenology at ultimate precision