
Modeling Hadronization using 
Machine Learning

DIS2023

Tony Menzo
PhD candidate, University of Cincinnati

In collaboration with:
Phil Ilten, Stephen Mrenna, Manuel Szewc, Michael Wilkinson, Ahmed Youssef, and Jure Zupan

Based upon work in 2203.04983, 23xx.xxxxx



Tony Menzo                                    Modeling Hadronization using Machine Learning 2

Stringy Hadronization

The momentum fraction z of each fragmenting 
hadron is sampled according to the

Lund fragmentation function

Early 80s brought many non-perturbative 
hadronization models: Cluster, percolation, …
 

Lund String Model
(used in Pythia)
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Room for improvement

Cannot be improved by retuning

Monash Tune (a,b,σperp) 1404.5630

● Discrepancies in high multiplicty events 
i.e.  enhanced particle production 
around the azimuthal angle of a trigger 
jet (CMS) “the ridge”

● Unavoidable discrepancies in parameter tuning

1009.4122
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Motivation

Predict experimentally measured 
distributions from microscopic dynamics 
(SM + nonperturbative models).

The main motivation is to create a better simulation of collider events.

But also to promote a paradigm shift in the modeling of non-perturbative physics.

Goal of event generators:

NLO, NNLO, N3LO, ...   ???

2203.11601



Tony Menzo                                    Modeling Hadronization using Machine Learning 5

How to improve the generator: two* approaches
● Improve model

– MPIs, rope hadronization, transverse mass 
supression, flavor asymmetries, hadronic 
rescattering, multiscale models (string → 
hydrodynamical), flavor selector, etc.

– Utilize techniques from gauge-gravity 
duality

Hard to come up with 
mathematically precise model 
without established 
calculational techniques

● Data-driven generator
– Sample directly from global 

distributions

Non-universal and extremely 
difficult to convert into 
representative particle flow 
data

* or a combination of both (machine learning methods)
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Where can/will machine learning  be useful in 
event generators?

1. Event generation

a.  Input experimental/simulated data 
⟶ Output replica data

i. Generative machine learning 
algorithms

2. Parameter tuning

a. Input model parameters ⟶ Output 
optimal parameters

i. Hadronization has O(200 
parameters), requires new tuning 
paradigm: Simulation based 
inference

3. Model exploration

a. Input experimental/simulated data ⟶ Output potential models
i. Hadronization models already do well! Symbolic regression + 

graph neural networks may allow for determination of 
perturbations 
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Generative machine learning
To make any headway we need a tool which will allow us to 
efficiently sample probability distributions whose analytic 
form is unknown. 

Generative machine learning algorithms are the 
perfect tool! 
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Consider Pythia output as ‘experimental data’ and try to 
reproduce hadronization observables by training on single 

emission kinematics (~learn the fragmentation function 
f(z)).

Start from simplest hadronizing system:
1. qq → π’s
2. Assume no correlations between emissions
3. Ecut~5 GeV (To avoid termination effects)

Train on pz and pT distributions of 1st emitted π

Proof of concept (2203.04983) 
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Training Results (cSWAE)
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Training Results 
(cSWAE with labels and boundaries) 

*Preliminary

0 25 50 75 100 125 150 175 200
pz

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

P
D

F

Target

m = 0.3 GeV

m = 0.5 GeV

m = 0.7 GeV

m = 0.9 GeV

0 100 200 300 400 500 600 700 800
pz

0.000

0.002

0.004

0.006

0.008

P
D

F

Target

m = 200.0 GeV

E = 400.0 GeV

E = 600.0 GeV

E = 800.0 GeV



Tony Menzo                                    Modeling Hadronization using Machine Learning 13

Hadronization (kinematics + flavor selector)
The trained model distributions now need to be integrated 

into a chain of fragmentations



Tony Menzo                                    Modeling Hadronization using Machine Learning 14

Global observable (Hadron multiplicity cSWAE)
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Global scaling (Hadron multiplicty vs string energy cSWAE)
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Error estimation (BINN)

Incorportating (theoretical/experimental) errors from training 
dataset errors into the hadronization simulation

*Preliminary
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Conclusion
Model + machine learning methods CAN be 
used to implement hadronization within 
event generators and provide an explicit 
path for improvement. 
What’s next:

● ML-improved (data-improved) model of 
hadronization

●  ML flavor selector
●  Hadronization tuning
●  Error estimation

Check out our repo!

https://gitlab.com/uchep/mlhad

Check out our paper:
arXiV: 2203.04983

https://gitlab.com/uchep/mlhad
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Back-up
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Architectures

Conditional sliced-Wasserstein 
Autoencoder (cSWAE) Conditional normalizing flow (cNF)
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*Preliminary
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