Modeling Hadronization using Machine Learning

DIS2023

Tony Menzo

PhD candidate, University of Cincinnati

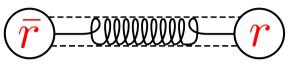
In collaboration with:

Phil Ilten, Stephen Mrenna, Manuel Szewc, Michael Wilkinson, Ahmed Youssef, and Jure Zupan

Based upon work in 2203.04983, 23xx.xxxx

Stringy Hadronization

Early 80s brought many non-perturbative hadronization models: Cluster, percolation, ...

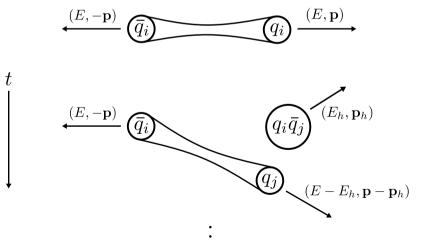


Lund String Model

(used in Pythia)

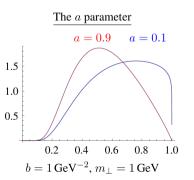
The momentum fraction z of each fragmenting hadron is sampled according to the

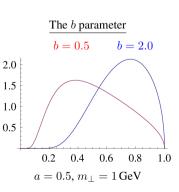
Lund fragmentation function



 $f(z) \propto \frac{(1-z)^a}{z} \exp\left(\frac{-bm_{\perp}^2}{z}\right)$

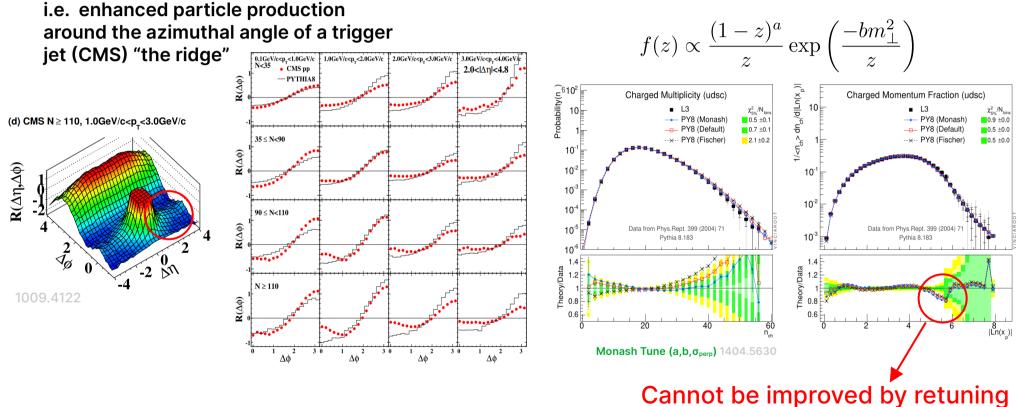
 $z = \frac{p_z + E_h}{2E}$





Tony Menzo

Room for improvement



Unavoidable discrepancies in parameter tuning

Discrepancies in high multiplicty events

Motivation

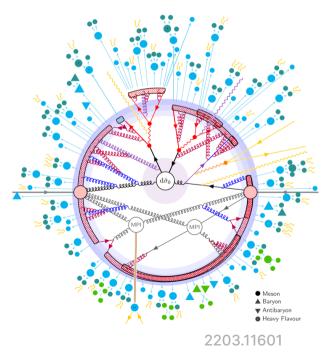
The main motivation is to create a better simulation of collider events.

But also to promote a paradigm shift in the modeling of non-perturbative physics.

Goal of event generators:

Predict experimentally measured distributions from microscopic dynamics (SM + nonperturbative models).

NLO, NNLO, N³LO, ...



Tony Menzo

How to improve the generator: two* approaches

Improve model

- MPIs, rope hadronization, transverse mass supression, flavor asymmetries, hadronic rescattering, multiscale models (string → hydrodynamical), flavor selector, etc.
- Utilize techniques from gauge-gravity duality

Hard to come up with mathematically precise model without established calculational techniques

- Data-driven generator
 - Sample directly from global distributions

Non-universal and extremely difficult to convert into representative particle flow data

* or a combination of both (machine learning methods)

Where can/will machine learning be useful in event generators?

1. Event generation

- a. Input experimental/simulated data \rightarrow Output replica data
 - i. Generative machine learning algorithms

2. Parameter tuning

- a. Input model parameters \rightarrow Output optimal parameters
- i. Hadronization has O(200 parameters), requires new tuning paradigm: Simulation based inference

3. Model exploration

- a. Input experimental/simulated data \rightarrow Output potential models
- i. Hadronization models already do well! Symbolic regression + graph neural networks may allow for determination of perturbations

Where can/will machine learning be useful in event generators?

1. Event generation

a. Input experimental/simulated data \rightarrow Output replica data

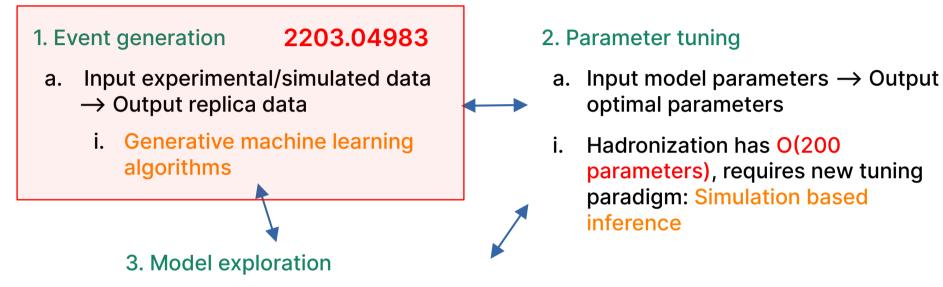
3. Model exploration

i. Generative machine learning algorithms

2. Parameter tuning

- a. Input model parameters \rightarrow Output optimal parameters
- i. Hadronization has O(200 parameters), requires new tuning paradigm: Simulation based inference
- a. Input experimental/simulated data \rightarrow Output potential models
- i. Hadronization models already do well! Symbolic regression + graph neural networks may allow for determination of perturbations

Where can/will machine learning be useful in event generators?

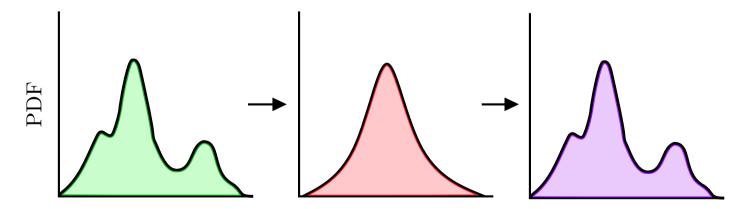


- a. Input experimental/simulated data \rightarrow Output potential models
- i. Hadronization models already do well! Symbolic regression + graph neural networks may allow for determination of perturbations

Generative machine learning

To make any headway we need a tool which will allow us to efficiently sample probability distributions whose analytic form is unknown.

Generative machine learning algorithms are the perfect tool!



Proof of concept (2203.04983)

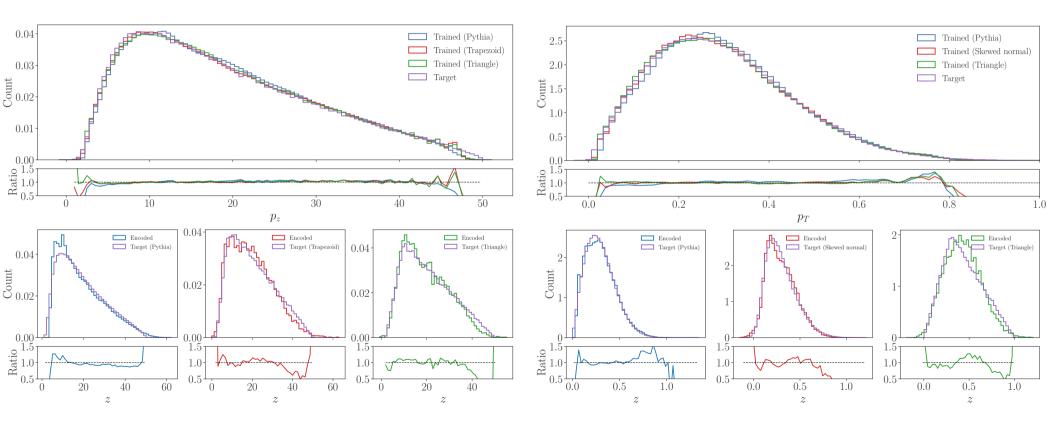
Consider Pythia output as 'experimental data' and try to reproduce hadronization observables by training on single emission kinematics (~learn the fragmentation function f(z)).

Start from simplest hadronizing system:

- 1. $q\overline{q} \rightarrow \pi$'s
- 2. Assume no correlations between emissions
- **3.** E_{cut}~5 GeV (To avoid termination effects)

Train on p_z and p_T distributions of 1st emitted π

Training Results (CSWAE)

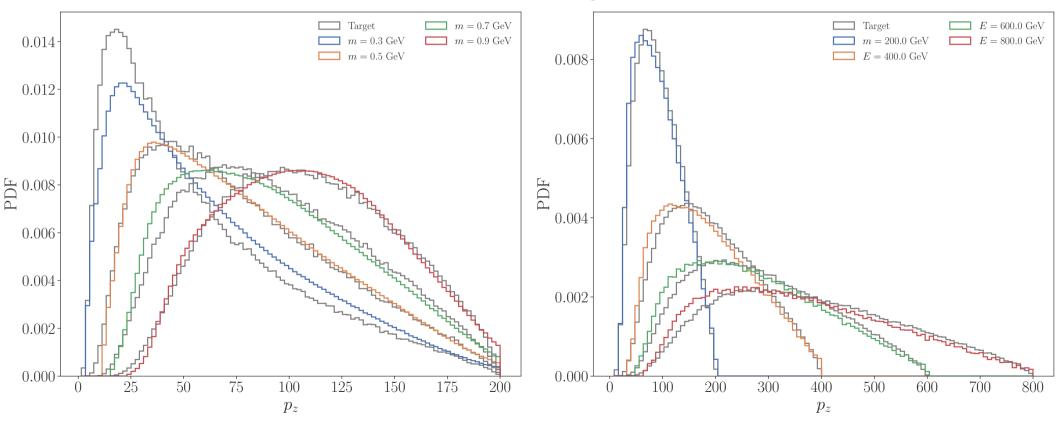


Tony Menzo

Training Results

(cSWAE with labels and boundaries)

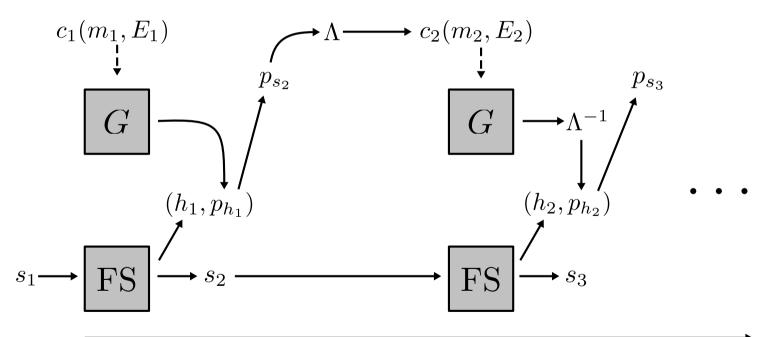
***Preliminary**



Tony Menzo

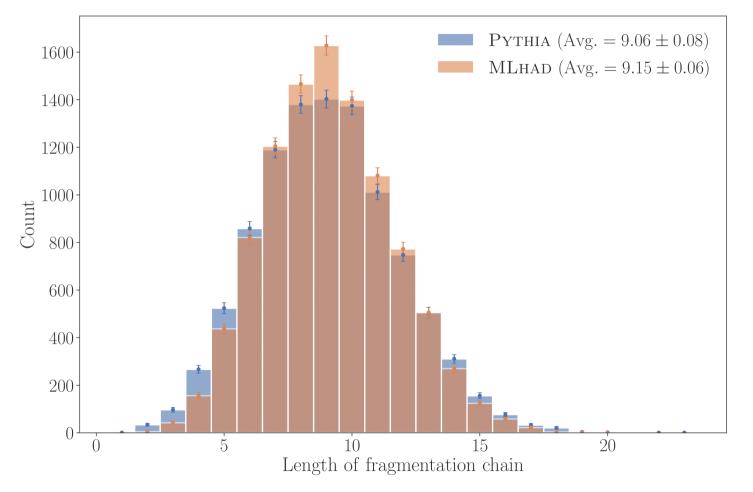
Hadronization (kinematics + flavor selector)

The trained model distributions now need to be integrated into a chain of fragmentations

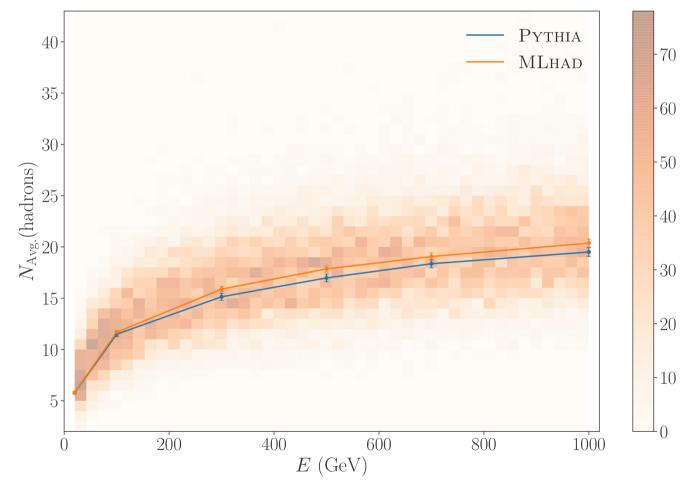


Stopping condition : $E_i < E_{cut}$

Global observable (Hadron multiplicity cSWAE)



Global scaling (Hadron multiplicty vs string energy cSWAE)

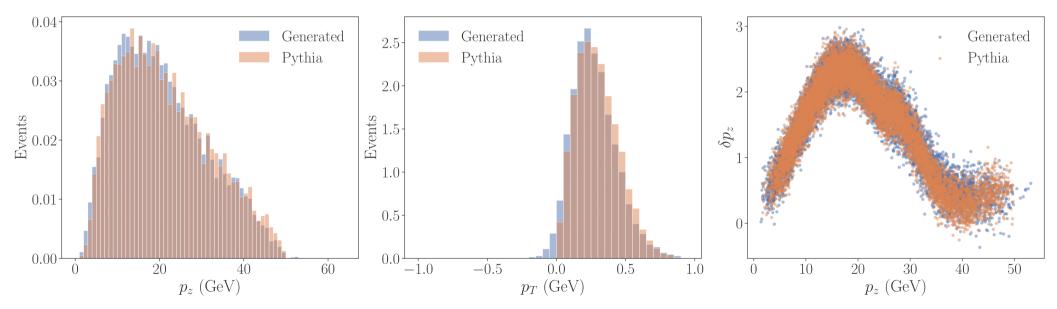


Tony Menzo

Modeling Hadronization using Machine Learning

Error estimation (BINN)

Incorportating (theoretical/experimental) errors from training dataset errors into the hadronization simulation



*Preliminary

Tony Menzo

Conclusion

Model + machine learning methods **CAN** be used to implement hadronization within event generators and provide an explicit path for improvement.

What's next:

- ML-improved (data-improved) model of hadronization
- ML flavor selector
- Hadronization tuning
- Error estimation

Check out our repo!

https://gitlab.com/uchep/mlhad

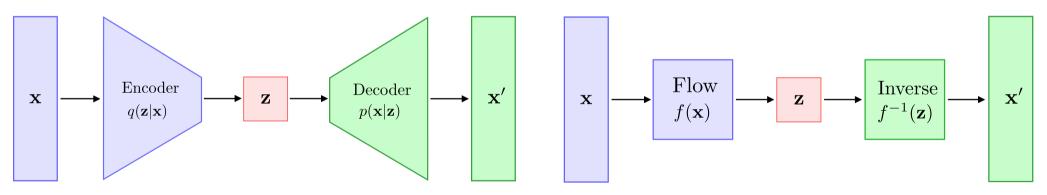
Check out our paper: arXiV: 2203.04983

Back-up

Architectures

Conditional sliced-Wasserstein Autoencoder (cSWAE)

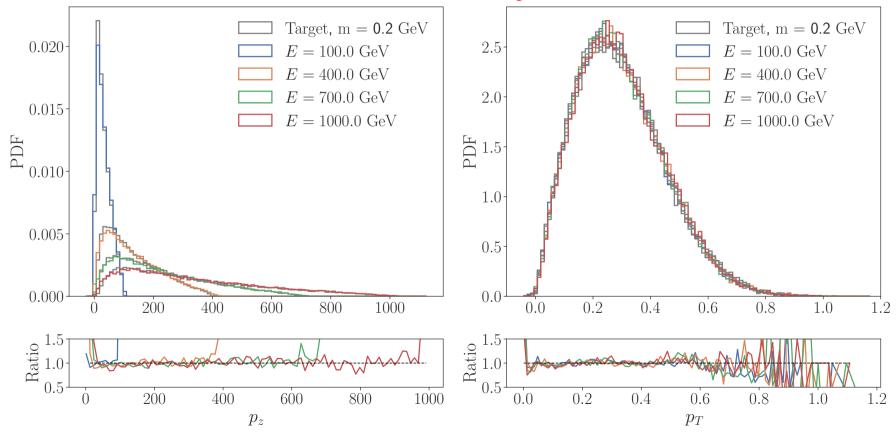
Conditional normalizing flow (cNF)



Training Results

(cNF with labels)

***Preliminary**



Tony Menzo