

Fast evaluation of heavy quark contributions to DIS in APFEL++

DIS 2023 - Michigan State University

Peter Risse (risse.p@uni-muenster.de)

living.knowledge

Contents

► Factorization

- Zero Mass Variable Flavor Number Scheme
- Fixed Flavor Number Scheme
- General Mass Variable Flavor Number Scheme

The approximate sACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Numerical implementation

► APFEL++

Contents

Overview: Heavy Quark schemes in DIS

- Factorization
- Zero Mass Variable Flavor Number Scheme
- Fixed Flavor Number Scheme
- General Mass Variable Flavor Number Scheme

The approximate sACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Numerical implementation

► APFEL++

Introduction to heavy quark schemes in DIS

Factorization in DIS structure functions

$$F_{\lambda}(x,Q^2) = \sum_{k} C_k^{\lambda} \otimes f_k = \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_k^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{M_i}{\mu}, \alpha_s(\mu)\right) f_k(\xi,\mu)$$

Introduction to heavy quark schemes in DIS

Factorization in DIS structure functions

$$F_{\lambda}(x,Q^2) = \sum_{k} C_k^{\lambda} \otimes f_k = \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_k^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{M_i}{\mu}, \alpha_s(\mu)\right) f_k(\xi,\mu)$$

- Wilson coefficients have a complicated α_s expansion
 these are the hard scattering amplitudes
- **b** heavy quark mass effects sizable at $Q \sim M_H$
- extremely important for global PDF fits
 - bulk of experimental data from DIS
 - need fast theory predictions
- older implementations are not well-optimized

Zero Mass Variable Flavor Number Scheme (ZMVFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account

Zero Mass Variable Flavor Number Scheme (ZMVFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account

 \blacktriangleright simple but works best far from threshold $\mathrm{Q} \gg \mathrm{M_{H}}$

Zero Mass Variable Flavor Number Scheme (ZMVFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account
- \blacktriangleright simple but works best far from threshold $\mathrm{Q} \gg \mathrm{M_{H}}$

Fixed Flavor Number Scheme (FFNS)

- \blacktriangleright treat all quarks as massless except for the heaviest M_H
- this mass appears explicitly in the Wilson coefficients

Zero Mass Variable Flavor Number Scheme (ZMVFNS)

- consider only quarks below threshold: $M_H < Q$
- neglect all mass terms part of the Wilson coefficients
- do not take phase space constraints into account
- \blacktriangleright simple but works best far from threshold $\mathrm{Q} \gg \mathrm{M_{H}}$

Fixed Flavor Number Scheme (FFNS)

- \blacktriangleright treat all quarks as massless except for the heaviest M_H
- this mass appears explicitly in the Wilson coefficients
- \blacktriangleright good results for $\mathrm{Q} \sim \mathrm{M_{H}}$ unreliable as $oldsymbol{Q}$ becomes large

General Mass Variable Flavor Number Schemes (GMVFNS)

 'interpolating' between FFNS and ZMVFNS

T. Stavreva et al., arXiv: 1203.0282

General Mass Variable Flavor Number Schemes (GMVFNS)

- 'interpolating' between FFNS and ZMVFNS
- several choices can be made, resulting in different schemes:
 - ► ACOT: minimal extension of the MS renormalisation scheme
 - FONLL: interpolating between schemes with a damping function
 - ► **TR-method**: requiring smooth transition at *Q* = *M*_{*H*}

T. Stavreva et al., arXiv: 1203.0282

Contents

- Factorization
- Zero Mass Variable Flavor Number Scheme
- Fixed Flavor Number Scheme
- General Mass Variable Flavor Number Scheme

The approximate sACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Numerical implementation

APFEL++

approximate sACOT- χ at NNLO

Stavreva et al, arXiv:1203.0282

approximate sACOT- χ at NNLO

Stavreva et al, arXiv:1203.0282

approximate sACOT- χ at NNLO

Stavreva et al, arXiv:1203.0282

approximate simplified ACOT-
$$\chi$$
approximate:ACOT $[\mathcal{O}(\alpha_s^0) + \mathcal{O}(\alpha_s^1)] + ZM-VFNS [\mathcal{O}(\alpha_s^2)|_{\chi}]$ simplified: $\sum_{i=1}^{i=1}^{i=1} \sum_{j=1}^{i=1}^{i=1} \sum_{j=1}^{i=1}^{i=1} \sum_{j=1}^{i=1}^{i=1} \sum_{j=1}^{i=1} \sum_{j=1}^{i=1}$

sACOT- χ – NNLO gluon

Neutral current

filter out the individual quark flavor contribution

▶ hit coefficient with $\chi(n)$ -prescription

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{nM_j}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

repeat for all flavors

sACOT- χ – NNLO gluon

Charged current

- filter out the individual quark flavor contribution
 - \blacktriangleright take care of the flavor change at the W^\pm vertex
- hit coefficient with $\chi(n)$ -prescription

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{n M_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

• use heaviest quark mass: $M_H = \text{Heaviest}(M_j, M_k)$

repeat for all flavors

Stavreva et al, arXiv:1203.0282

Non-singlet combination $q^{\rm NS} = \sum_{i=1}^{n_f} \left(\hat{e}_i^2 - \langle \hat{e}^2 \rangle \right) (q_i + \bar{q}_i) \quad \text{with} \quad \langle \hat{e}^2 \rangle = \frac{1}{n_f} \sum_{i=1}^{n_f} \hat{e}_i^2$ "whenever the incoming parton couples to the EW-boson"

- filter out the individual quark flavor contribution
- ▶ hit coefficient with $\chi(n)$ -prescription

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{nM_i}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

repeat for all flavors

Non-singlet combination $q^{\rm NS} = \sum_{i=1}^{n_f} \left(\hat{e}_i^2 - \langle \hat{e}^2 \rangle \right) \left(q_i + \bar{q}_i \right) \text{ with } \langle \hat{e}^2 \rangle = \frac{1}{n_f} \sum_{i=1}^{n_f} \hat{e}_i^2$ "whenever the incoming parton couples to the EW-boson" filter out the individual quark flavor contribution \blacktriangleright take care of the flavor change at the W^{\pm} vertex \blacktriangleright hit coefficient with $\chi(n)$ -prescription $\blacktriangleright \chi(n) = x \left[1 + \left(\frac{nM_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$ • use heaviest quark mass: M_H = Heaviest (M_i, M_i) repeat for all flavors

Stavreva et al, arXiv:1203.0282

filter out the individual quark flavor contribution

 \blacktriangleright hit coefficient with $\chi(n)\mbox{-}{\rm prescription}$

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{n M_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

• use heaviest quark mass: $M_H = \text{Heaviest}(M_i, M_k)$

- repeat for all flavors
 - both incoming and outgoing flavors

filter out the individual quark flavor contribution

- \blacktriangleright take care of the flavor change at the W^\pm vertex
 - note that we have three flavors now
- hit coefficient with $\chi(n)$ -prescription

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{n M_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

• use heaviest quark mass: $M_H = \mathsf{Heaviest}(M_i, M_j, M_k)$

- repeat for all flavors
 - both incoming and outgoing flavors

sACOT- χ – NNLO purely singlet

Purly singlet contribution

$$F_{a,q_i} \simeq C_{a,q}^{\mathbf{PS}} \otimes \langle \hat{e}^2 \rangle (q_i + \bar{q}_i)$$

"the EW-boson does not couple to the incoming quark"

filter out the individual quark flavor contribution

▶ hit coefficient with $\chi(n)$ -prescription

$$\blacktriangleright \chi(n) = x \left[1 + \left(\frac{nM_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$$

- use heaviest quark mass: M_H = Heaviest (M_i, M_k)
- repeat for all flavors
 - both incoming and outgoing flavors

sACOT- χ – NNLO purely singlet

Purly singlet contribution

$$F_{a,q_i} \simeq C_{a,q}^{\mathbf{PS}} \otimes \langle \hat{e}^2 \rangle (q_i + \bar{q}_i)$$

"the EW-boson does not couple to the incoming quark"

- filter out the individual quark flavor contribution
 - \blacktriangleright take care of the flavor change at the W^\pm vertex
 - note that we have three flavors now
- hit coefficient with $\chi(n)$ -prescription
 - $\blacktriangleright \chi(n) = x \left[1 + \left(\frac{n M_H}{Q} \right)^2 \right] \qquad n = 0, 1, 2, 3$
 - use heaviest quark mass: $M_H = \text{Heaviest}(M_i, M_j, M_k)$
- repeat for all flavors
 - both incoming and outgoing flavors

Contents

- ► Factorization
- Zero Mass Variable Flavor Number Scheme
- Fixed Flavor Number Scheme
- General Mass Variable Flavor Number Scheme

The approximate sACOT- χ scheme at NNLO

neutral current (Stavreva et al, arXiv:1203.0282)

charged current

Numerical implementation

► APFEL++

APFEL++ - A PDF evolution library in c++

Bertone, arXiv:1708.00911

- ▶ main author: V. Bertone
- rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

APFEL

APFEL++ - A PDF evolution library in c++

Bertone, arXiv:1708.00911

- main author: V. Bertone
- rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

Precompute observables

$$F_{\lambda}(x,Q^2) = \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_k^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{\mu}, \frac{M_i}{\mu}, \alpha_s(\mu)\right) f_k(\xi, \mu)$$

APFEL++ - A PDF evolution library in c++

Bertone, arXiv:1708.00911

- ► main author: V. Bertone
- rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

Precompute observables

$$F_{\lambda}(x,Q^{2}) = \sum_{k} \int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_{k}^{\lambda} \left(\frac{\chi}{\xi},\frac{Q}{\mu},\frac{M_{i}}{\mu},\alpha_{s}(\mu)\right) f_{k}(\xi,\mu)$$
Replace with interpolating functions: \uparrow

$$\sum_{lpha}^{N_{\xi}} w_{lpha}(\xi) f_k(\xi_{lpha},\mu)$$

APFEL++ - A PDF evolution library in c++

Bertone, arXiv:1708.00911

main author: V. Bertone

rewrite of the Fortran APFEL code
 used by the NNPDF collaboration

Precompute observables

$$F_{\lambda}(x,Q^{2}) = \sum_{k} \sum_{\alpha} \underbrace{\int_{\chi}^{1} \frac{\mathrm{d}\xi}{\xi} C_{k}^{\lambda} \left(\frac{\chi}{\xi}, \frac{Q}{mu}, \frac{M_{i}}{\mu}, \alpha_{s}(\mu)\right) w_{\alpha}(\xi)}_{\mathbf{Precompute}} f_{k}(\xi_{\alpha}, \mu)$$

Available schemes in APFEL++

scheme	$\mathcal{O}(lpha_s)$	NC: F_2	NC: F_3	NC: F_L	$\mathbf{CC}:$ F_2	сс : <i>F</i> ₃	f cc: F_L
ZM	N2LO	1	1	1	1	1	1
FONLL-C	N2LO	1	×	1	×	×	×
АСОТ	NLO	1	1	1	×	×	×
sACOT- χ	NLO	1	1	1	1	1	1
approx. sACOT- χ	N2LO	1	1	1	1	1	1

Neutral Current F_2 at NNLO in APFEL++

- very good agreement with old implementation in all kinematic regions
 - compared to the nCTEQ++ code
- speed-up to current implementation:
 \$\mathcal{O}\$(100)

Neutral Current F_2 at NNLO in APFEL++

- very good agreement with old implementation in all kinematic regions
 - compared to the nCTEQ++ code
- speed-up to current implementation:
 \$\mathcal{O}\$(100)
- planned: make this available also via the xFitter code

n-scaling dependence for $F_2(W^+)$

▶ very small dependence on the *n*-scaling (between n = 1 and n = 3)

Conclusion

- ► the approximate sACOT- χ extends the sACOT scheme to NNLO
 - NNLO contributions by including ZM-coefficients
 - approximate phase-space constraints

Conclusion

- the approximate sACOT-\u03c6 extends the sACOT scheme to NNLO
 - NNLO contributions by including ZM-coefficients
 - approximate phase-space constraints
- scheme has been extended to the charged current
 - small dependence on the n-scaling variable
 - approximate sACOT- χ now available for all structure functions

Conclusion

- the approximate sACOT-\u03c6 extends the sACOT scheme to NNLO
 - NNLO contributions by including ZM-coefficients
 - approximate phase-space constraints
- scheme has been extended to the charged current
 - small dependence on the n-scaling variable
 - approximate sACOT- χ now available for all structure functions
- fast implementation in the apfel++ code
 - soon to be made public
 - all six structure functions available
 - evaluation speed up: $\mathcal{O}(100)$

Fast evaluation of heavy quark contributions to DIS in APFEL++

backup

ACOT at NLO

Aivazis et al, arXiv:9312318 and arXiv:9312319

LO quark-boson scattering

+ NLO gluon-boson scattering

- subtraction term

ACOT at NLO

Aivazis et al, arXiv:9312318 and arXiv:9312319

LO quark-boson scattering

+ NLO gluon-boson scattering

- subtraction term

ACOT at NLO

Aivazis et al, arXiv:9312318 and arXiv:9312319

LO quark-boson scattering

+ NLO gluon-boson scattering

subtraction term

 $F_2(W^+)$

 $F_3(W^+)$

 $F_L(W^+)$

