

Study of J/ ψ production with jet activity in p+p collisions at $\sqrt{s}=200$ GeV with the STAR experiment

27 - 31 March 2023 @ DIS2023, Michigan State University

Yi Yang

National Cheng Kung University

Introduction

O Production of heavy quarkonium (J/ψ or Y) involves two processes:

- Hard process (short distance): the production of $q\overline{q}$ pair and it can be calculated by pQCD
- Soft process (long distance): the formation of quarkonium from $q\overline{q}$ and it can be parameterized by phenomenological models
- → Studies of quarkonium properties (production, polarization, ...) provide valuable insights to QCD
- O Models on the market:

The quantum numbers (spin, color) of the final and initial states are the same

- Color Singlet Model (CSM)
- Non-Relativistic QCD (CSM + Color Octet Mechanism)
- Color Glass Condensate effective theory (CGC) + NRQCD
- Color Evaporation Model (CEM)/Improved CEM

The quantum numbers of the initial and final quark pairs can be different

Motivation

- O To fully understand the quarkonium production mechanism requires understanding of all variables (not only cross section and polarization)
- It is suggested that quarkonium production from the CSM should result in a larger jet activity (number of jets per event) than that from the COM (Physics Reports, 889, 1 (2020))
- → An alternative variable to distinguish different models

Relativistic Heavy-Ion Collider (RHIC)

○ The most versatile collider in the world!

The STAR detector

Yi Yang

Analysis procedure

- Observable: J/ψ production cross section vs. jet activity
- O Data set: p+p collisions at $\sqrt{s} = 200$ GeV recorded in 2015

Find J/ψ signal and jets

- \bigcirc J/ ψ mesons are reconstructed via dimuon decay channel
- O Charged jets are reconstructed using anti-k_T algorithm
 - $^{\bullet}$ J/ ψ and their daughter muons are not included in jet finding
 - Only accept jets with $p_T > 3 \text{ GeV/c}$
- O Two jet radii are considered: R = 0.4 and R = 0.6

Correction for the number of J/ψ

O Candidate-by-candidate weighting method:

- $N_{J/\psi}^{corrected} = \sum_{1}^{N_{J/\psi}} w_i$, where $w_i = (\varepsilon_{reco} \times A)^{-1}$
- ε_{reco} : total reconstruction efficiency
- \bullet A: total acceptance (kinematic and MTD geometry)

Correction for the jet activity

- Unfolding with RooUnfoldBayes algorithm in RooUnfold package
- Response matrices are built using PYTHIA8 events with detector effects

J/ψ cross section and uncertainties

- \bigcirc The J/ ψ production cross section as a function of jet activity:
 - $Br(J/\psi \to \mu^+\mu^-) \times \frac{d\sigma}{dN_{jet}} = \frac{1}{\Delta N_{jet}} \times \frac{N_{J/\psi \to \mu^+\mu^-}^{corrected}}{\int L \, dt}$
 - \bullet ΔN_{jet} denotes the bin width of each N_{jet} bin, which equals to 1
- Various uncertainties are included
 - Statistical uncertainty
 - Systematic uncertainties
 - OSignal extraction
 - **O**Efficiencies
 - **O**Acceptance
 - OUnfolding procedure
 - OResponse matrix

Results

- O First results of J/ ψ production cross section as a function of jet activity in p+p collisions at \sqrt{s} = 200 GeV
- \bigcirc J/ ψ p_T < 10 GeV/c and charged jet p_T ≥ 3 GeV/c

Comparison to PYTHIA

- Рутніа8 predictions are scaled for shape comparison:
 - PYTHIA8 underestimates the cross section by about a factor of 2
 - The result for R = 0.4 jet has a small discrepancy in shape (p-value = 0.18)
 - The result for R = 0.6 jet shows an inconsistency in shape (p-value = 0.01)
 - Larger fraction of J/ ψ are produced associated with jets than in data

Summary

- O First results of J/ ψ production cross section as a function of jet activity in p+p collisions at \sqrt{s} = 200 GeV
 - Detector effects are corrected, and systematic uncertainties are estimated
- O Differences between data and the Pythia8 predictions:
 - Inconsistency in shape (p-value = 0.01) with jet R = 0.6
 - Larger fraction of J/ ψ are produced associated with jets in PYTHIA8 than data
- A new observable to constrain different models and provide additional insights to the quarkonium production mechanism
- Theorical calculations are welcome

Yi Yang

Outlook

O A more precise measurement with an extra jet activity bin can be performed with more than 4 times larger statistics in p+p collisions at $\sqrt{s} = 500$ GeV collected by STAR in 2017

Yi Yang

Backup

