

Recent Heavy Flavour Spectroscopy and Exotic Hadrons Results at CMS

Kai Yi (Tsinghua University & Nanjing Normal University) On behalf of CMS Collaboration

DIS2023 28 Mar 2023, Michigan State University, US

Outline

- Observation of new structures in the J/ ψ J/ ψ mass spectrum
 - <u>CMS preliminary result</u> <u>CMS PAS BPH-21-003 at CDS</u>
- Observation of a new excited beauty strange baryon $\Xi_b (6100)^-$ decaying to $\Xi_b^- \pi^+ \pi^-$
 - *Phys. Rev. Lett.* **126**, 252003 (2021)
- Observation of $B^0 \to \psi$ (2S)K_s^0 $\pi^+\pi^-$ and $B_s^{\ 0} \to \psi$ (2S)K_s^0 decays
 - *Eur. Phys. J. C* 82, 499 (2022)

Two possible extensions of mesons to tetra-quark states Possible penta-quark state Gell-mann noted the possibility of "exotic" hadrons in classic 1964 paper

Selected CMS contributions to heavy exotic states

New Domain of Exotics: All-Heavy Tetra-quarks

- First mention of 4c states at 6.2 GeV (1975): Y. Iwasaki, Prog. of Theo. Phys. Vol. 54, No. 2
 (Just one year after the discovery of J/ψ)
 Linked by color electric flux in a bag
- First calculation of 4c states (1981): K.-T. Chao, Z. Phys. C 7 (1981) 317

Possible P-wave to S-wave decays

Fig.4

• A different exotic system compared to exotics with light quarks

The CMS detector & trigger

 η coverage (track & muon):

Excellent detectors for mulit-muon (exotic) quarkonium:

- Muon system
 - + High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.
 - μ p_T, ($\mu\mu$) p_T, ($\mu\mu$) mass, ($\mu\mu$) vertex, and additional μ

$J/\psi J/\psi$ --Data samples & event selections at CMS

- 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- Trigger: 3μ with a J/ ψ mass window, μ p_T from J/ ψ >3.5 GeV for 2017&2018 data
- Blinded signal region: [6.2,7.8] GeV based on preliminary investigation on data collected in 2011-2012
- Main selections:
 - Fire corresponding trigger in each year
 - $p_T(\mu) \ge 2.0 \text{ GeV}; |\eta(\mu)| \le 2.4; p_T(\mu)_{(J/\psi)} \ge 3.5 \text{ GeV}; \text{ soft muon ID (very loose)}$
 - $p_T(\mu^+\mu^-) >= 3.5 \text{ GeV}; m(\mu^+\mu^-) \text{ in } [2.95, 3.25] \text{ GeV}; \text{ then constrain } m(\mu^+\mu^-) \text{ to } J/\psi \text{ mass}$
 - 4μ vertex probability >0.005
 - Multiple candidates treatment:
 - Select best combination of same 4μ (~0.2%) with

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{m_1(\mu^+\mu^-) - M_{J/\psi}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{m_1(\mu^+\mu^-) - M_{J/\psi}}\right)$$

- Keep all candidates arising from $^{2}4\mu$ (~0.2%)
- Signal and background samples produced by Pythia8, JHUGen, HELAC-Onia...

7

Final CMS model: 3 BWs + Background (null)

Statistical significance based on:

 $2 \ln(L_0/L_{max})$

	BW1 (MeV)	BW2 (MeV)	BW3 (MeV)
m	6552 ± 10	6927± 9	7287±19
Г	124± 29	122± 22	95± 46
Ν	474± 113	492± 75	156± 56

- BW2[X(6900)] (9.4 σ) confirmation
- Observation of BW1 (6.5 σ)
- Evidence for BW3 (4.1σ)

Statistical significance only

Summary of systematic uncertainties and CMS result

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3		1	18	15	17
feeddown shape	11	>1	1	25	8	6
momentum scaling	1	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20
	0.110					

Table 2: Systematic uncertainties on masses and widths, in MeV.

CMS PAS BPH-21-003

- Investigated effects of systematics on local significance by a profiling procedure a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Only noticeable change: BW1 significance changed from 6.5σ to $>5.7\sigma$
 - No relative significance changes for BW2 and BW3

$M[BW1] = 6552 \pm 10 \pm 12 \text{ MeV}$	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5.7 σ		X(6900) [LHCb] (somewhat different fit model)
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 o	consistent	M[BW2]=6905+11+7 MeV
$M[BW3] = 7287 \pm 19 \pm 5 MeV$	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 o		Γ [BW2] =80±19±33 MeV
CMS PAS BPH-21-003 (N	on-interference fit results)			9

X(6900) reported by LHCb

- In 2020, LHCb reported X(6900) state in $J/\psi J/\psi$ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" auxiliary BWs to interfere with NRSPS background to account for dip
- LHCb agnostic on which one is to be preferred

• What happens if fit CMS data using LHCb models?

Fit with LHCb model I: background+2 auxiliary BWs+ X(6900)

 117 ± 24

CMS Data shows a shoulder before BW1

 112 ± 27

 6927 ± 10

CMS shoulder helps make BW1 distinct

 6550 ± 10

Does not describe well dips

Model I

CMS

- X(6900) parameters are in good agreement with LHCb LHCb did not give parameters for another 2 BWs
- CMS vs LHCb comparisons:
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance due to pseudo-rapidity range) •
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

Fit with LHCb model II: DPS + X(6900) + auxiliary BW interferes with NRSPS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
 - Fast CMS threshold turn-on drives NRSPS high, which drives large aux. BW
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7200) region

The dips

CMS PAS BPH-21-003

- ➢ Possibility #2:
- Multiple fine structures to reproduce the dips?

- Possibility #1:
- Interference among structures?
- Why no interference between J/ψ and $\psi(2S)$?
 - Width too narrow to overlap

- More secrets to dig out
- We explored possibility #1 in detail

Exploration of possible interference among BWs

- Explored fit with interference among various combinations of BWs
- Pdf for three BW interference

$$\begin{aligned} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \text{ and interf}} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{SPS}(m) + N_{NRDPS} \cdot f_{DPS}(m) \cdot \end{aligned}$$

- Many ways interference due to possible J^{PC} and quantum coherence
 - 2-object-interference among BW0, BW1, BW2, BW3
 - 3-object-interference among BW0, BW1, BW2, BW3
 - 4-object-interference among BW0, BW1, BW2, BW3
- Our choice: interference among BW1, BW2, BW3

Interf. term

CMS interference fit

- Fit with interf. among BW1, BW2 and BW3 describes data well
- Measured mass and width in the interference fit

Summary of systematic uncertainties for interf. case

- Total systematic uncertainty is quadrature sum of each source
- Systematic uncertainties from feeddown contribution are asymmetric; systematic uncertainties from other sources are symmetric

Fit	Dominant sources	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
Interference	Signal shape	7	12	7	56	8	7
	NRDPS	1	3	2	18	6	2
	NRSPS	9	14	13	85	9	20
	Resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	< 1	5	3	2
	Feeddown shape	-27	+44	+38	-208	+19	+12
	Full uncertainty	$+16\\-31$	$^{+48}_{-20}$	$^{+41}_{-15}$	$^{+109}_{-235}$	$+25 \\ -17$	$+29\\-26$

CMS PAS BPH-21-003

Feed down—partically reconstructed from higher mass states

Final result

• Measured mass and width

		Non-i	nterference fit	CMS PAS	S BPH-21-003	Interferer	nce fit	
	BW1		BW2	BW3		BW1	BW2	BW3
т	6552 ± 10 ±	± 12	$6927\pm9\pm5$	$7287 \pm 19 \pm 5$	m [MeV]	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
Γ	$124\pm29\pm$: 34	$122\pm22\pm19$	$95\pm46\pm20$	Γ[MeV]	$444^{+226+109}_{100}$	191^{+66+25}_{40}	97^{+40+29}_{-20}
N	474 ± 11	3	492 ± 75	156 ± 56		-199-233	-49-17	-29-20

Systematic uncertainty table (sources with minor effects suppressed)

	N	on-inter	rference	fit		CMS	PAS B	PH-21-003	Interfere	ence fit		-		
Source		ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$	Dominant sources	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape		3	4	3	14	7	7							
NRDPS		1	< 1	< 1	3	3	4	Signal shape	7	12	7	56	8	7
NRSPS		3	1	1	18	15	17	NRDPS	1	3	2	18	6	2
momentum scaling		1	3	4	-	-	-	NRSPS	9	14	13	85	9	20
mass resolution		< 1	< 1	< 1	< 1	< 1	1	Resolution	8	4	1	24	7	13
combinatorial background	d	< 1	< 1	< 1	2	3	3	Combinatorial bkg.	7	2	< 1	5	3	2
efficiency		< 1	< 1	< 1	1	< 1	1	Feeddown shape	-27	+44	+38	-208	+19	+12
feeddown shape		11	1	1	25	8	6	Full uncertainty	+16	+48	+41	+109	+25	+29
total		12	5	5	34	19	20		-31	-20	-15	-235	-17	-26

• Implication of interf. Result:

- Same J^{PC}
- Large separation--200-300 MeV indicates radial excitation
- Any theoretical predication?

Summary

CMS found 3 significant $J/\psi J/\psi$ structures using 135 fb⁻¹ 13 TeV data

- BW2 consistent with X(6900) reported by LHCb
- CMS found two new structures, provisionally named as X(6600), X(7200)
- A family of structures which are candidates for all-charm tetra-quarks!
 - Large mass separations 200+ MeV suggest radial excitation
 - Possible interference effects suggest same J^{PC} and coherent production
- All-heavy quark exotic states offer system easier to understand, i.e., ignore relativistic effect...
- Mass differences from multiple structures can be better calculated with a further measurement
- A new window to understand the strong interaction

CMS has good sensitivity to all-muon final states in this mass region

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

Observation of a new excited beauty strange baryon Ξ_b (6100)⁻ decaying to $\Xi_b^-\pi^+\pi^-$

Phys. Rev. Lett. 126, 252003 (2021)

$$\begin{split} \Xi_b(6100)^- &\twoheadrightarrow \Xi_b^- \, \pi^+ \, \pi^- \\ \Xi_b^- \text{ decays to } J/\psi \, \Xi^- \end{split}$$

 Ξ_b^- decays to J/ $\psi \Lambda K^-$ 19

E family and its spectroscopy

- The ±b family are qsb isodoublets, their ground states have been observed at Tevatron.
 Now LHC' high energy and immense statistics provide a lot of opportunities for studying its resonances and rare decays, and several of such excited states have been observed recently
- There are <u>predictions</u>, based on $\Xi_c(2815) \to \Xi_c(2645)\pi \to \Xi_c\pi\pi$ analogues, for new Ξ_b^- resonance in near-threshold $\Xi_b^-\pi^+\pi^-$ mass spectrum, decaying with intermediate $\Xi_b^{**-} \to \Xi_b^{*0}\pi^-$.
 - Ξ_b^{**-} is expected to have the mass about 6100-6130 MeV and non-neglible natural width.

State	j_{qs} , J^P	Quarks	Decay mode	Mass, MeV	Observation (with links)
Ξ_b^0	0 , 1/2+	u s b	$\Xi_c^+\pi^-$	5791.9 ± 0.5	<u>D0, 2007</u> <u>CDF, 2007</u>
Ξ_b^-	0,1/2+	d s b	$J/\psi \Xi^-$	5797.0 ± 0.9	<u>CDF, 2011</u>
$\Xi_{b}^{'-}$ Ξ_{b}^{*-}	1,1/2 ⁺ 1,3/2 ⁺	d s b	$\Xi_b^0\pi^-$	$5935.02 \pm 0.05 \\ 5955.33 \pm 0.13$	<u>LHCb, 2015, 7, 8 TeV</u>
$\Xi_b^{'0}$	1 , 1/2+	u s b	??? (radiational?)	$< m(\Xi_b^-) + m(\pi^+)$:(
Ξ_b^{*0}	1,3/2+	u s b	$\Xi_b^-\pi^+$	5951.4 ± 1.2 5952.2 ± 0.9	<u>CMS, 2012, 7 TeV</u> LHCb, 2016, 7, 8 TeV
$\Xi_b(6227)^-$???	d s b	$\Xi^0_b \pi^- \ \Lambda^b K^-$	6226.9 ± 2.0	LHCb, 2018, 7, 8, 13 TeV
$\Xi_b(6227)^0$???	u s b	$\Xi_b^-\pi^+$	6227.1 ± 1.5	LHCb, 2020 7, 8, 13 TeV

2016+2017+2018 data @13 TeV

Yield: 859 ±36 Mass: 5797.0±0.7 MeV Two gaussians for signal

PDG:: 5797.0±0.6 MeV

Yield: 815 \pm 74 for J/ ψ AK⁻, 820 \pm 158 for J/ ψ Σ^{0} K⁻ Mass: 5800.1 \pm 1.2 MeV (fully reconstructed channel) Two gaussians for fully reconstructed signal Asymetric Gaussian for particlly reconstructed signal

Invariant mass difference ΔM

Yield: 26 ± 7 (fully reconstructed) and 34 ± 9 Mass difference: 5797.0±0.7 MeV BW ⊕ Resolutoin for signal, where resolution (Gaus) parameters fixed to simulation

Summary

 The first observation of a new excited beauty strange baryon, supposing to be \(\frac{\mathbf{L}_b}{6100}\)⁻ resonance with J^P = 3/2⁻, with the following properties:

$$\Xi_{b}^{**}$$

$$q \quad s \quad b$$

$$j_{qs} = 1$$

$$J^{P} = \frac{1}{2} \text{ or } \frac{3}{2}$$

$$L = 1$$

$$\begin{split} &M(\Xi_b(6100)^-) - M(\Xi_b^-) - 2 \cdot m^{\rm PDG}(\pi^{\pm}) = 24.14 \pm 0.22 \pm 0.05 \; MeV \\ &M(\Xi_b(6100)^-) = 6100.3 \pm 0.2 \pm 0.1 \pm 0.6 \; MeV \\ &\Gamma(\Xi_b(6100^-) < 1.9 \; MeV @ 95 \% \; CL \end{split}$$

<u>Recently confirmed by LHCb: https://moriond.in2p3.fr/QCD/2023/MondayAfternoon/Gandini.pdf</u>

Observation of $B_s^0 \rightarrow \psi(2S)K_s^0$ decay

2017+2018 data @13 TeV

Eur. Phys. J. C 82, 499 (2022)

Background: exponential function

Signal: 2-x Gaus with common mean for both peaks. $B^0 \rightarrow \psi(2S)K_S^0$ parameters are floating. σ_1, σ_2 of $B_s^0 \rightarrow \psi(2S)K_S^0$ are fixed to $\sigma_{(12)}^{B^0} \cdot \sigma_{eff.MC}^{B_s^0} / \sigma_{eff.MC}^{B^0}$

$N(B^0)$	16657 ± 135
$N(B_s^0)$	113 ± 23

Significance 5.2 σ !

First observation of $B_s{}^0 \rightarrow \psi(2S)K_s{}^0$

Observation of $B^0 \rightarrow \psi(2S)K_s^0\pi^+\pi^-$ decays

2017+2018 data @13 TeV Search for possible exotic states

Fit results						
$m(B^0)$	$5279.2 \pm 0.2 \text{ MeV}$					
$m_{PDG}(B^0)$	$5279.65 \pm 0.12 \ MeV$					
$\sigma_{eff}(B^0)$	9.7 <u>+</u> 0.6 <i>MeV</i>					
$\sigma_{effMC}(B^0)$	9.17 ± 0.10 <i>MeV</i>					
χ^2/ndf	75.3 / 92					

Eur. Phys. J. C 82, 499 (2022)

Significance > 30 σ

3-body intermediate invariant masses

$$B^0 \to \psi(2S) K_S^0 \pi^+ \pi^-$$

The data (black) shows a hint of the $K_1 (1270)^0 \rightarrow K_S^0 \pi^+ \pi^-$

Didn't see new exotic narrow structures

2-body intermediate invariant masses

Summary

• The first Observation of $B^0 \rightarrow \psi(2S)K_s^0\pi^+\pi^-$ and $B_s^0 \rightarrow \psi(2S)K_s^0$ and estimation the branching fraction ratios

$$egin{aligned} R_s &= rac{\mathcal{B}(\mathrm{B}^0_{\mathrm{s}} o \psi(2\mathrm{S})\mathrm{K}^0_{\mathrm{s}})}{\mathcal{B}(\mathrm{B}^0 o \psi(2\mathrm{S})\mathrm{K}^0_{\mathrm{s}})} = (3.33 \pm 0.69\,(\mathrm{stat}) \pm 0.11\,(\mathrm{syst}) \pm 0.74(f_s/f_d))\%, \ R_{\pi^+\pi^-} &= rac{\mathcal{B}(\mathrm{B}^0 o \psi(2\mathrm{S})\mathrm{K}^0_{\mathrm{s}}\pi^+\pi^-)}{\mathcal{B}(\mathrm{B}^0 o \psi(2\mathrm{S})\mathrm{K}^0_{\mathrm{s}})} = (48.0 \pm 1.3\,(\mathrm{stat}) \pm 3.2\,(\mathrm{syst}))\%. \end{aligned}$$

- Both ratios are compatible with their analogues in J/ψ channels.
- Inspection of the phase-space distributions of $B^0 \rightarrow \psi(2S)K_s^0\pi^+\pi^$ does not reveal any additional exotic narrow structure.

Overall Summary

- CMS found 3 significant $J/\psi J/\psi$ structures using 135 fb⁻¹ 13 TeV data
- First observation of a new excited beauty strange baryon, supposing to be E_b (6100)⁻
- First Observation of $B^0 \rightarrow \psi(2S)K_s^0\pi^+\pi^-$ and $B_s^0 \rightarrow \psi(2S)K_s^0$ and estimation the branching fraction ratios
- CMS continue make contributions to the this topic

Backup

J/ψ signal

Remove by J/ψ mass related cuts
Clean J/ψ signal as seen

• ~15000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ) <15 GeV)

• ~9000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ) <9 GeV)

CMS background (BW0 + NRSPS + DPS)

- Most significant structure in first step is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - Inadequacy of NRSPS model at threshold (only one floating parameter)?
 - **BW0** parameters very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- NRSPS+NRDPS+BW0 as our background

Comparison with LHCb & ATLAS

- CMS vs LHCb comparisons:
 - 135/9 **≈** <mark>15X</mark> (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance)
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

- CMS vs ATLAS comparisons:
 - ATLAS is 1/3 –1/2 of CMS data (trigger?)
 - ATLAS used dR cut—remove high mass events
 - ATLAS has slightly worse resolution

Comparison with some theoretical calculations

Table 1. Predictions of the masses (MeV) of S-wave fully heavy $T_{4Q}(nS)$ tetraquarks. Only 0⁺⁺ and 2⁺⁺ are considered for $T_{bc\bar{b}\bar{c}}$. The uncertainty is from the coupling constant $\alpha_s = 0.35 \pm 0.05$.

Nucl. Phys. B 966 (2021) 115393

T _{4Q} (<i>nS</i>) states	J^{P}	Mass(n=1)	Mass(n=2)	Mass(n=3)	Mass(n=4)
$T_{ccar{c}ar{c}}$	0++	$6055\substack{+69\\-74}$	$6555\substack{+36\\-37}$	6883^{+27}_{-27}	$7154\substack{+22\\-22}$
	2++	$6090\substack{+62\\-66}$	$6566\substack{+34\\-35}$	6890^{+27}_{-26}	7160^{+21}_{-22}
$T_{ccar{c}ar{c}ar{c}}^\prime$	0++	5984_{-67}^{+64}	$6468\overset{25}{_{-5}}$	6795^{+26}_{-26}	366^{+21}_{-22}
$T_{bc\bar{b}\bar{c}}$	0++	12387^{+109}_{-120}	12911^{+18}_{-11}	13200^{+35}_{-36}	$13429\substack{+29 \\ -30}$
	2++	$12401\substack{+117\\-106}$	$12914\substack{+49\\-49}$	13202^{+35}_{-36}	$13430\substack{+29\\-29}$
$T_{bcar{b}ar{c}}'$	0++	$12300\substack{+106\\-117}$	$12816\substack{+48 \\ -50}$	$13.04\substack{+35\\-35}$	$13333\substack{+29\\-29}$
$T_{bb\bar{b}\bar{b}}$	0++	$18475\substack{+151 \\ -169}$	$19073\substack{+59 \\ -63}$	19353^{+42}_{-42}	$19566\substack{+33\\-35}$
	2++	18483^{+149}_{-168}	$19075\substack{+59 \\ -62}$	19355^{+41}_{-43}	$19567\substack{+33\\-35}$
$T_{bbar{b}ar{b}}^{\prime}$	0++	$18383\substack{+149\\-167}$	$18976\substack{+59\\-62}$	$19256\substack{+43\\-42}$	$19468\substack{+34\\-34}$
			M[BW1] = 6638 ± 10 ±	12 MeV
		S-wave	M[BW2	2] = 6847 ± 9 ±	5 MeV
			M[BW3	3] = 7134 ± 19 :	± 5 MeV

Radial excited p-wave states (like J/ψ series)?

- Or Radial excited S-wave states?
- Theoretical situation difficulty & confusing
 - Important next step: measure J^{PC} to clarify

