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Fragmentation in cold nuclear matter via semi-inclusive DIS
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SIDIS with nuclear targets probes parton dynamics in cold nuclear matter. An interplay of jet
energy scale (Q,E = zν) and multiple medium scales:

• In-medium path length L.

• Mean free path of parton-medium rescattering λg .

• Inverse scattering range of rescattering ξ ≳ ΛQCD.
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Sizeable nuclear modifications in SIDIS observed at EMC, HERMES, CLAS

Rh
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2)
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2)
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/
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EMC ZPC52(1991)1–11

◁ HERMES NPB780(2007)1-27

CLAS PRC105(2022)015201

• Are these modifications (at least partly) perturbatively calculable?

• What are the NP inputs to understand data and to characterize the cold nuclear matter?
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An EFT approach to in-medium parton dynamics: SCETG

Soft-Collinear-Effective-Theory with Glauber gluon [A. Idilbi, A. Majumder PRD80(2009)054022, G.

Ovanesyan, I. Vitev, JHEP06(2011)080] .

• Collinear mode pc ∼ (1, λ2, λ)ν and soft mode ps ∼ (λ2, λ2, λ2)ν from SCET.

• Glauber gluon q ∼ (λ2, λ2, λ)ν. Background field from medium sources (x1, x2, · · · xi , · · · )

Aµ,a
G (q) =

∑
i

−gse
−iq−x+

i

q2
⊥ + ξ2 ⟨X |Jµ,a|i⟩

pc

xi ∼ L

ρG (xi )q

• Medium-size sensitive modes have p− ∼ 1
L =⇒ λ = 1√

νL
.

• p2
c ∼ q2 ∼ ν · 1

L
a semi-hard scale for thin medium!

• p2
s ∼ 1/L2, non-perturbative.
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Scale separation in a thin/dilute medium

• Consider eA DIS at moderately large xB (xB ≳ 0.1) such that ν
L ∼ Q2

10xBA1/3 < Q2.

• “The semi-hard scale ν
L ” ≫ “the average q2

T transfer ξ2 L
λg

”.

• This work further assumes L/λg = O(1).

Q2Λ2
QCD ∼ ξ2 ξ2 L

λg

ν
L

the order in thin medium

L
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The single-hadron SIDIS cross section with ν/L ≫ ξ2

dσep→h

dxBdQ2dzh
=

2πα2
e

Q4

∑
i,j

e2
q fi/A(xB)⊗ C h

ij (x , z)︸ ︷︷ ︸
Fij (z)

⊗dh/j(zh)

dσeA→h

dxBdQ2dzh
=

∑
i,j

2πα2
e

Q4

[
Fij(z) + ∆Fmed

ij (z)
]
⊗ dh/j(zh)

AG AG

1

A2
G

1

• ∆Fmed
ij (z) = F

(0)
ik ⊗ P

med(1)
kj are corrections from medium-induced parton splittings.

• P
med(1)
kj are complicated, and past studies often rely on numerical approach/MC.

• We use analytic approach to gain understanding & insights for in-medium factorization.
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The key observation: P
med(1)
ij constains endpoint divergences

• Endpoint divergences appears because all masses (ξ2, etc) are dropped according to
collinear power counting ξ2 ≪ ν/L. For example, the flavor non-singlet spectrum

∆Fmed
NS (z) =

∫ 1

z

dx

x
FNS(

z

x
)Pmed(1)

qq (x) + virtual term.

Pmed(1)
qq (x) = A(αs , · · · ) ·

P
vac(0)
qq (x)

[x(1 − x)]1+2ϵ ·
[
µ2L

χzν

]2ϵ

· Cn∆n(x)

• They can be regulated using dimension regularization (d = 4 − 2ϵ),

∆FNS(z) = A(αs , · · · )
(

1
2ϵ

+ ln
µ2L

χzν

)
2CF [2CA

(
− d

dz
+

1
z

)
︸ ︷︷ ︸

from x→1

+
CF

z︸︷︷︸
x→0

]FNS(z) + F.O.

• Absorb divergence with an in-medium renormalization Fij −→
(
M

(0)
ik + 1

ϵM
(1)
ik

)
⊗ Fkj .

It suggests another relevant sector (collinear-soft) as µ2 approaches ξ2 (or ξ2L/λg ).
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RG equations for the collinear sector

• Define τ(µ2) = ρGL
2

ν
πB
2β0

[
αs(µ

2)− αs

(
χ zν

L

)]
evolving from µ2 = χ zν

L down to ξ2.
Depend on Q2 only through coefficients B and χ > 3.0.

∂FNS(τ, z)

∂τ
=

(
4CFCA

∂

∂z
− 4CFCA + 2C 2

F

z

)
FNS

A “traveling wave” solution for FNS

FNS(τ, z) =
FNS (0, z + 4CFCAτ)

(1 + 4CFCAτ/z)1+CF/(2CA)

The primary effect: shift spectra by δz = −4CFCAτ .

The parton energy loss picture ∆E = νδz ∝ ρGL
2.
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• Flavor singlets Fg and Ff = Fq + Fq̄, for f = u, d , s.

∂Ff

∂τ
=

(
4CFCA

∂

∂z
− 4CFCA + 2C 2

F

z

)
Ff + 2CFTF

Fg

z
,

∂Fg

∂τ
=

(
4C 2

A

∂

∂z
− 2Nf CF

z

)
Fg + 2C 2

F

∑
f

Ff

z
.
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Comparison with HERMES data [NPB780(2007)1-27]

• Baseline: NLO DIS and SIDIS cross sections. NNFF1.0LO vacuum FF [EPJC77(2017)516]

and nNNPDF3.0 nuclear PDF [EPJC82(2022)507] .

• Calculated with averaged HERMES ⟨Q2⟩ ≈ 2.25 GeV, ⟨ν⟩ = 12 GeV.

• Central values tuned to ξ = 0.35 GeV, ρG = 0.4 fm−3. Band:
( 2

3 ,
3
2

)
ρG

• Good agreement except for the region zh → 1 (not dominated by collinear modes).
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Comparison with SIDIS at EMC [ZPC52(1991)1–11]

• Such effects were observed at EMC at higher ⟨Q2⟩ = 11 GeV2 and ⟨ν⟩ = 62 GeV.

• Same value of parameters (ξ, ρG ) as used for HERMES. Bands: ( 2
3 ,

3
2 )ξ

2, ( 2
3 ,

3
2 )ρG .
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Projection for EIC: ePb versus ep

• Same parameters, but expects smaller effects at small xB as parton too energetic in the
nuclear rest frame. From left to right: ν = 107 GeV, 36 GeV, 21 GeV

• EIC will enable a fully differential scan in a large range of ν,Q2.
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Towards a factorization formula for fragmentation in eA?

• Medium-size sensitive modes have p− ∼ 1/L.

• We have identified the semi-hard scale in the
problem p2 ∼ ν/L for a thin medium.

• Ongoing & preliminary : including
medium-induced collinear-soft CSm with p2 ≳ ξ2.
Relevant for the correct description as zh → 1.

• A formal definition of nuclear NP inputs.
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Summary and Future

• In-medium fragmentation is a multi-scale problem and contains perturbative & NP physics.

• For thin medium, we identify the semi-hard scale ν/L for medium-induced collinear modes
=⇒ a region for perturbative treatment.

• The first in-medium NLO calculation using the RG analysis.

A partial-differential RG equation follows from endpoint divergences in the collinear sector.

Simple RG solutions were obtained with a clear physical interpretation.

• Phenomenological parameters ξ2, ρG tuned to HERMES SIDIS data

=⇒ good descriptive power at both HERMES and EMC energy.

• Towards a factorization formulation and formal definition of NP nuclear parameters.
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Questions?
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Connection to the modified DGLAP equation

The medium-modified DGLAP are widely used phenomenology approach in both eA and AA

∂

∂ lnµ2Dh/i = [Pvac
ij +∆Pmed

ij ]+ ⊗ Dh/j

• In numerical solver, all divergences in ∆Pmed
ij are screened by a mass

k2
⊥ > ξ2 ⇒ x , (1 − x) >

ξ2

µ2

• The mDGLAP (a simplified version) can be Taylor expanded around, e.g., x = 1,

∂FNS

∂ lnµ2 = 4CFCAA0

∫ 1−µ2
D

µ2

0

4
π

Φ(µ
2L

2E )
µ2L
2E

(
x
z

)
FNS(

z
x )−

FNS(z)
z

(1 − x)2
dx

=
4
π

Φ(µ
2L

2E )
µ2L
2E

× 4CFCAA0 ln
µ2

µ2
D

[
∂FNS

∂z
− FNS

z

]
+ non-log-enhanced terms

• Same leading-log physics as the RG approach (if one chooses µ2 = k2
⊥/[x(1 − x)]).
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Pion vs Kaon

• Change to DSS parametization for π± and K± fragmentation function. D. Florian et al.
PRD75(2007)114010 and PRD91(2015)014035
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Ongoing: higher-order in opacity?

• Complexity of in-medium splitting function blows up with opacity N = 1, 2 · · · .

• Assume the leading contribution still comes from the endpoint region, especially near
x = 1.

• The opacity N = 2 contributions leads to two types of corrections:

αsCR
µ2
G

E/L
· [a1∂z + · · ·︸ ︷︷ ︸

N=1

+ a2
µ2
G

ξ2 ∂z + b2
µ2
G

E/L
∂2
z + · · ·︸ ︷︷ ︸

N=2

], µ2
G = αsρGL

= αsCR
µ2
G

E/L
·
[(

a1 + a2
µ2
G

ξ2

)
∂z + b2

µ2
G

E/L
∂2
z + · · ·

]
It is interesting to investigate whether the opacity expansion leads to a gradient expansion
of the evolution equation.
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