# A renormalization group analysis of medium-modified fragmentation in SIDIS 

XXX International Workshop on Deep-Inelastic Scattering and Related Subjects.

Weiyao Ke, Los Alamos National Laboratory
In collaboration with Ivan Vitev, 2301.11940 and works in preparation
Mar 29, 2023

## Fragmentation in cold nuclear matter via semi-inclusive DIS



SIDIS with nuclear targets probes parton dynamics in cold nuclear matter. An interplay of jet energy scale ( $Q, E=z \nu$ ) and multiple medium scales:

- In-medium path length $L$.
- Mean free path of parton-medium rescattering $\lambda_{g}$.
- Inverse scattering range of rescattering $\xi \gtrsim \Lambda_{\mathrm{QCD}}$.


## Sizeable nuclear modifications in SIDIS observed at EMC, HERMES, CLAS

 $R_{A}^{h}=\frac{N_{e A \rightarrow \pi^{0}}\left(z_{h}, p_{T}^{2} ; \nu, Q^{2}\right)}{N_{e d \rightarrow \pi^{0}}\left(z_{h}, p_{T}^{2} ; \nu, Q^{2}\right)}$
$N_{e X \rightarrow h}=\frac{d \sigma_{e X \rightarrow h}}{d \nu d Q^{2} d z_{h} d p_{T}^{2}} / \frac{d \sigma_{e X}}{d \nu d Q^{2}}$
EMC ZPC52(1991)1-11
$\triangleleft$ HERMES NPB780(2007)1-27
CLAS PRC105(2022)015201

- Are these modifications (at least partly) perturbatively calculable?
- What are the NP inputs to understand data and to characterize the cold nuclear matter?


## An EFT approach to in-medium parton dynamics: SCET $_{G}$

Soft-Collinear-Effective-Theory with Glauber gluon [A. Idilbi, A. Majumder PRD80(2009)054022, G.
Ovanesyan, I. Vitev, JHEP06(2011)080] .

- Collinear mode $p_{c} \sim\left(1, \lambda^{2}, \lambda\right) \nu$ and soft mode $p_{s} \sim\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) \nu$ from SCET.
- Glauber gluon $q \sim\left(\lambda^{2}, \lambda^{2}, \lambda\right) \nu$. Background field from medium sources $\left(x_{1}, x_{2}, \cdots x_{i}, \cdots\right)$

$$
A_{G}^{\mu, a}(q)=\sum_{i} \frac{-g_{s} e^{-i q^{-} x_{i}^{+}}}{\mathrm{q}_{\perp}^{2}+\xi^{2}}\langle X| J^{\mu, a}|i\rangle \quad \overline{q \uparrow\}} \rho_{c} \quad \rho_{G}\left(x_{i}\right)
$$

[^0]- $p_{s}^{2} \sim 1 / L^{2}$, non-perturbative.


## An EFT approach to in-medium parton dynamics: SCET $_{G}$

Soft-Collinear-Effective-Theory with Glauber gluon [A. Idilbi, A. Majumder PRD80(2009)054022, G.
Ovanesyan, I. Vitev, JHEP06(2011)080] .

- Collinear mode $p_{c} \sim\left(1, \lambda^{2}, \lambda\right) \nu$ and soft mode $p_{s} \sim\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) \nu$ from SCET.
- Glauber gluon $q \sim\left(\lambda^{2}, \lambda^{2}, \lambda\right) \nu$. Background field from medium sources $\left(x_{1}, x_{2}, \cdots x_{i}, \cdots\right)$

$$
A_{G}^{\mu, a}(q)=\sum_{i} \frac{-g_{s} e^{-i q^{-} x_{i}^{+}}}{\mathrm{q}_{\perp}^{2}+\xi^{2}}\langle X| J^{\mu, a}|i\rangle
$$



- Medium-size sensitive modes have $p^{-} \sim \frac{1}{L} \Longrightarrow \lambda=\frac{1}{\sqrt{\nu L}}$.
- $p_{c}^{2} \sim q^{2} \sim \nu \cdot \frac{1}{L}$ a semi-hard scale for thin medium!
- $p_{s}^{2} \sim 1 / L^{2}$, non-perturbative.



## Scale separation in a thin/dilute medium

- Consider eA DIS at moderately large $x_{B}\left(x_{B} \gtrsim 0.1\right)$ such that $\frac{\nu}{L} \sim \frac{Q^{2}}{10 x_{B} A^{1 / 3}}<Q^{2}$.
- "The semi-hard scale $\frac{\nu}{L}$ " $\gg$ "the average $q_{T}^{2}$ transfer $\xi^{2} \frac{L}{\lambda_{g}}$ ".
- This work further assumes $L / \lambda_{g}=\mathcal{O}(1)$.



## Scale separation in a thin/dilute medium

- Consider eA DIS at moderately large $x_{B}\left(x_{B} \gtrsim 0.1\right)$ such that $\frac{\nu}{L} \sim \frac{Q^{2}}{10 x_{B} A^{1 / 3}}<Q^{2}$.
- "The semi-hard scale $\frac{\nu}{L}$ " $\gg$ "the average $q_{T}^{2}$ transfer $\xi^{2} \frac{L}{\lambda_{g}}$ ".
- This work further assumes $L / \lambda_{g}=\mathcal{O}(1)$.



## The single-hadron SIDIS cross section with $\nu / L \gg \xi^{2}$

$$
\begin{aligned}
\frac{d \sigma_{e p \rightarrow h}}{d x_{B} d Q^{2} d z_{h}} & =\frac{2 \pi \alpha_{e}^{2}}{Q^{4}} \sum_{i, j} \underbrace{e_{q}^{2} f_{i / A}\left(x_{B}\right) \otimes C_{i j}^{h}(x, z)}_{F_{i j}(z)} \otimes d_{h / j}\left(z_{h}\right) \\
\frac{d \sigma_{e A \rightarrow h}}{d x_{B} d Q^{2} d z_{h}} & =\sum_{i, j} \frac{2 \pi \alpha_{e}^{2}}{Q^{4}}\left[F_{i j}(z)+\Delta F_{i j}^{\mathrm{med}}(z)\right] \otimes d_{h / j}\left(z_{h}\right)
\end{aligned}
$$




- $\Delta F_{i j}^{\text {med }}(z)=F_{i k}^{(0)} \otimes P_{k j}^{\text {med(1) }}$ are corrections from medium-induced parton splittings.
- $P_{k j}^{\operatorname{med}(1)}$ are complicated, and past studies often rely on numerical approach/MC.
- We use analytic approach to gain understanding \& insights for in-medium factorization.


## The key observation: $P_{i j}^{\operatorname{med}(1)}$ constains endpoint divergences

- Endpoint divergences appears because all masses ( $\xi^{2}$, etc) are dropped according to collinear power counting $\xi^{2} \ll \nu / L$. For example, the flavor non-singlet spectrum

$$
\begin{aligned}
& \Delta F_{\mathrm{NS}}^{\mathrm{med}}(z)=\int_{z}^{1} \frac{d x}{x} F_{\mathrm{NS}}\left(\frac{z}{x}\right) P_{q q}^{\operatorname{med}(1)}(x)+\text { virtual term. } \\
& P_{q q}^{\operatorname{med}(1)}(x)=A\left(\alpha_{s}, \cdots\right) \cdot \frac{P_{q q}^{v a(0)}(x)}{[x(1-x)]^{1+2 \epsilon}} \cdot\left[\frac{\mu^{2} L}{\chi z \nu}\right]^{2 \epsilon} \cdot C_{n} \Delta_{n}(x)
\end{aligned}
$$

- They can be regulated using dimension regularization $(d=4-2 \epsilon)$, $\Delta F_{\mathrm{NS}}(z)=A\left(\alpha_{s}\right.$,

- Absorb divergence with an in-medium renormalization

It sugosests another relevant sector (collinear-soft) as $\mu^{2}$ a pproaches $\xi^{2}$ (or $\xi^{2} L / \lambda_{g}$ )

## The key observation: $P_{i j}^{\operatorname{med}(1)}$ constains endpoint divergences

- Endpoint divergences appears because all masses ( $\xi^{2}$, etc) are dropped according to collinear power counting $\xi^{2} \ll \nu / L$. For example, the flavor non-singlet spectrum

$$
\begin{aligned}
& \Delta F_{\mathrm{NS}}^{\mathrm{med}}(z)=\int_{z}^{1} \frac{d x}{x} F_{\mathrm{NS}}\left(\frac{z}{x}\right) P_{q q}^{\operatorname{med}(1)}(x)+\text { virtual term. } \\
& P_{q q}^{\operatorname{med}(1)}(x)=A\left(\alpha_{s}, \cdots\right) \cdot \frac{P_{q q}^{v a(0)}(x)}{[x(1-x)]^{1+2 \epsilon}} \cdot\left[\frac{\mu^{2} L}{\chi z \nu}\right]^{2 \epsilon} \cdot C_{n} \Delta_{n}(x)
\end{aligned}
$$

- They can be regulated using dimension regularization $(d=4-2 \epsilon)$,

$$
\Delta F_{\mathrm{NS}}(z)=A\left(\alpha_{s}, \cdots\right)\left(\frac{1}{2 \epsilon}+\ln \frac{\mu^{2} L}{\chi z \nu}\right) 2 C_{F}[\underbrace{2 C_{A}\left(-\frac{d}{d z}+\frac{1}{z}\right)}_{\text {from } x \rightarrow 1}+\underbrace{\frac{C_{F}}{z}}_{x \rightarrow 0}] F_{\mathrm{NS}}(z)+\text { F.O. }
$$

- Absorb divergence with an in-medium renormalization It suggests another relevant sector (collinear-soft) as $\mu^{2}$ a pproaches $\xi^{2}\left(\right.$ or $\left.\xi^{2} L / \lambda_{g}\right)$.


## The key observation: $P_{i j}^{\operatorname{med}(1)}$ constains endpoint divergences

- Endpoint divergences appears because all masses ( $\xi^{2}$, etc) are dropped according to collinear power counting $\xi^{2} \ll \nu / L$. For example, the flavor non-singlet spectrum

$$
\begin{aligned}
& \Delta F_{\mathrm{NS}}^{\mathrm{med}}(z)=\int_{z}^{1} \frac{d x}{x} F_{\mathrm{NS}}\left(\frac{z}{x}\right) P_{q q}^{\operatorname{med}(1)}(x)+\text { virtual term. } \\
& P_{q q}^{\operatorname{med}(1)}(x)=A\left(\alpha_{s}, \cdots\right) \cdot \frac{P_{q q}^{v a(0)}(x)}{[x(1-x)]^{1+2 \epsilon}} \cdot\left[\frac{\mu^{2} L}{\chi z \nu}\right]^{2 \epsilon} \cdot C_{n} \Delta_{n}(x)
\end{aligned}
$$

- They can be regulated using dimension regularization $(d=4-2 \epsilon)$,

$$
\Delta F_{\mathrm{NS}}(z)=A\left(\alpha_{s}, \cdots\right)\left(\frac{1}{2 \epsilon}+\ln \frac{\mu^{2} L}{\chi z \nu}\right) 2 C_{F}[\underbrace{2 C_{A}\left(-\frac{d}{d z}+\frac{1}{z}\right)}_{\text {from } x \rightarrow 1}+\underbrace{\frac{C_{F}}{z}}_{x \rightarrow 0}] F_{\mathrm{NS}}(z)+\text { F.O. }
$$

- Absorb divergence with an in-medium renormalization $F_{i j} \longrightarrow\left(M_{i k}^{(0)}+\frac{1}{\epsilon} M_{i k}^{(1)}\right) \otimes F_{k j}$. It suggests another relevant sector (collinear-soft) as $\mu^{2}$ approaches $\xi^{2}$ (or $\xi^{2} L / \lambda_{g}$ ).


## RG equations for the collinear sector

- Define $\tau\left(\mu^{2}\right)=\frac{\rho_{G} L^{2}}{\nu} \frac{\pi B}{2 \beta_{0}}\left[\alpha_{s}\left(\mu^{2}\right)-\alpha_{s}\left(\chi \frac{z \nu}{L}\right)\right]$ evolving from $\mu^{2}=\chi \frac{z \nu}{L}$ down to $\xi^{2}$. Depend on $Q^{2}$ only through coefficients $B$ and $\chi>3.0$.

$$
\frac{\partial F_{\mathrm{NS}}(\tau, z)}{\partial \tau}=\left(4 C_{F} C_{A} \frac{\partial}{\partial z}-\frac{4 C_{F} C_{A}+2 C_{F}^{2}}{z}\right) F_{\mathrm{NS}}
$$



A "traveling wave" solution for $F_{N S}$

$$
F_{\mathrm{NS}}(\tau, z)=\frac{F_{\mathrm{NS}}\left(0, z+4 C_{F} C_{A} \tau\right)}{\left(1+4 C_{F} C_{A} \tau / z\right)^{1+C_{F} /\left(2 C_{A}\right)}}
$$

The primary effect: shift spectra by $\delta z=-4 C_{F} C_{A} \tau$.
The parton energy loss picture $\Delta E=\nu \delta z \propto \rho_{G} L^{2}$.

## RG equations for the collinear sector

- Define $\tau\left(\mu^{2}\right)=\frac{\rho_{G} L^{2}}{\nu} \frac{\pi B}{2 \beta_{0}}\left[\alpha_{s}\left(\mu^{2}\right)-\alpha_{s}\left(\chi \frac{z \nu}{L}\right)\right]$ evolving from $\mu^{2}=\chi \frac{z \nu}{L}$ down to $\xi^{2}$. Depend on $Q^{2}$ only through coefficients $B$ and $\chi>3.0$.

$$
\frac{\partial F_{\mathrm{NS}}(\tau, z)}{\partial \tau}=\left(4 C_{F} C_{A} \frac{\partial}{\partial z}-\frac{4 C_{F} C_{A}+2 C_{F}^{2}}{z}\right) F_{\mathrm{NS}}
$$

- Flavor singlets $F_{g}$ and $F_{f}=F_{q}+F_{\bar{q}}$, for $f=u, d, s$.

$$
\begin{aligned}
\frac{\partial F_{f}}{\partial \tau} & =\left(4 C_{F} C_{A} \frac{\partial}{\partial z}-\frac{4 C_{F} C_{A}+2 C_{F}^{2}}{z}\right) F_{f}+2 C_{F} T_{F} \frac{F_{g}}{z} \\
\frac{\partial F_{g}}{\partial \tau} & =\left(4 C_{A}^{2} \frac{\partial}{\partial z}-\frac{2 N_{f} C_{F}}{z}\right) F_{g}+2 C_{F}^{2} \sum_{f} \frac{F_{f}}{z}
\end{aligned}
$$

## Comparison with HERMES data [NPB780(2007)1-27]



- Baseline: NLO DIS and SIDIS cross sections. NNFF1.0LO vacuum FF [EPJC77(2017)516] and nNNPDF3.0 nuclear PDF [EPJC82(2022)507].
- Calculated with averaged HERMES $\left\langle Q^{2}\right\rangle \approx 2.25 \mathrm{GeV},\langle\nu\rangle=12 \mathrm{GeV}$.
- Central values tuned to $\xi=0.35 \mathrm{GeV}, \rho_{G}=0.4 \mathrm{fm}^{-3}$. Band: $\left(\frac{2}{3}, \frac{3}{2}\right) \rho_{G}$
- Good agreement except for the region $z_{h} \rightarrow 1$ (not dominated by collinear modes).


## Comparison with SIDIS at EMC [ZPC52(1991)1-11]



- Such effects were observed at EMC at higher $\left\langle Q^{2}\right\rangle=11 \mathrm{GeV}^{2}$ and $\langle\nu\rangle=62 \mathrm{GeV}$.
- Same value of parameters $\left(\xi, \rho_{G}\right)$ as used for HERMES. Bands: $\left(\frac{2}{3}, \frac{3}{2}\right) \xi^{2},\left(\frac{2}{3}, \frac{3}{2}\right) \rho_{G}$.


## Projection for EIC: ePb versus ep



- Same parameters, but expects smaller effects at small $x_{B}$ as parton too energetic in the nuclear rest frame. From left to right: $\nu=107 \mathrm{GeV}, 36 \mathrm{GeV}, 21 \mathrm{GeV}$
- EIC will enable a fully differential scan in a large range of $\nu, Q^{2}$.


## Towards a factorization formula for fragmentation in $\in A$ ?

- Medium-size sensitive modes have $p^{-} \sim 1 /$ L.
- We have identified the semi-hard scale in the problem $p^{2} \sim \nu / L$ for a thin medium.
- Ongoing \& preliminary: including medium-induced collinear-soft $\mathrm{CS}_{m}$ with $p^{2} \gtrsim \xi^{2}$. Relevant for the correct description as $z_{h} \rightarrow 1$.
- A formal definition of nuclear NP inputs.



## Summary and Future

- In-medium fragmentation is a multi-scale problem and contains perturbative \& NP physics.
- For thin medium, we identify the semi-hard scale $\nu / L$ for medium-induced collinear modes $\Longrightarrow$ a region for perturbative treatment.
- The first in-medium NLO calculation using the RG analysis.

A partial-differential RG equation follows from endpoint divergences in the collinear sector. Simple RG solutions were obtained with a clear physical interpretation.

- Phenomenological parameters $\xi^{2}, \rho_{G}$ tuned to HERMES SIDIS data $\Longrightarrow$ good descriptive power at both HERMES and EMC energy.
- Towards a factorization formulation and formal definition of NP nuclear parameters.


## Questions?

## Connection to the modified DGLAP equation

The medium-modified DGLAP are widely used phenomenology approach in both $e A$ and $A A$

$$
\frac{\partial}{\partial \ln \mu^{2}} D_{h / i}=\left[P_{i j}^{\mathrm{vac}}+\Delta P_{i j}^{\mathrm{med}}\right]_{+} \otimes D_{h / j}
$$

- In numerical solver, all divergences in $\Delta P_{i j}^{\text {med }}$ are screened by a mass

$$
\mathrm{k}_{\perp}^{2}>\xi^{2} \quad \Rightarrow \quad x,(1-x)>\frac{\xi^{2}}{\mu^{2}}
$$

- The mDGLAP (a simplified version) can be Taylor expanded around, e.g., $x=1$,

$$
\begin{aligned}
\frac{\partial F_{\mathrm{NS}}}{\partial \ln \mu^{2}} & =4 C_{F} C_{A} A_{0} \int_{0}^{1-\frac{\mu_{D}^{2}}{\mu^{2}}} \frac{4}{\pi} \frac{\Phi\left(\frac{\mu^{2} L}{2 E}\right)}{\frac{\mu^{2} L}{2 E}} \frac{\left(\frac{x}{z}\right) F_{\mathrm{NS}}\left(\frac{z}{x}\right)-\frac{F_{\mathrm{NS}}(z)}{z}}{(1-x)^{2}} d x \\
& =\frac{4}{\pi} \frac{\Phi\left(\frac{\mu^{2} L}{2 E}\right)}{\frac{\mu^{2} L}{2 E}} \times 4 C_{F} C_{A} A_{0} \ln \frac{\mu^{2}}{\mu_{D}^{2}}\left[\frac{\partial F_{\mathrm{NS}}}{\partial z}-\frac{F_{\mathrm{NS}}}{z}\right]+\text { non-log-enhanced terms }
\end{aligned}
$$

- Same leading-log physics as the RG approach (if one chooses $\mu^{2}=k_{\perp}^{2} /[x(1-x)]$ ).


## Pion vs Kaon



- Change to DSS parametization for $\pi^{ \pm}$and $K^{ \pm}$fragmentation function. D. Florian et al. PRD75(2007)114010 and PRD91(2015)014035


## Ongoing: higher-order in opacity?

- Complexity of in-medium splitting function blows up with opacity $N=1,2 \cdots$.
- Assume the leading contribution still comes from the endpoint region, especially near $x=1$.
- The opacity $N=2$ contributions leads to two types of corrections:

$$
\begin{aligned}
& \alpha_{s} C_{R} \frac{\mu_{G}^{2}}{E / L} \cdot[\underbrace{a_{1} \partial_{z}+\cdots}_{N=1}+\underbrace{a_{2} \frac{\mu_{G}^{2}}{\xi^{2}} \partial_{z}+b_{2} \frac{\mu_{G}^{2}}{E / L} \partial_{z}^{2}+\cdots}_{N=2}] \\
= & \alpha_{s} C_{R} \frac{\mu_{G}^{2}}{E / L} \cdot\left[\left(a_{1}+a_{2} \frac{\mu_{G}^{2}}{\xi^{2}}\right) \partial_{z}+b_{2} \frac{\mu_{G}^{2}}{E / L} \partial_{z}^{2}+\cdots\right]
\end{aligned}
$$

It is interesting to investigate whether the opacity expansion leads to a gradient expansion of the evolution equation.


[^0]:    - Medium-size sensitive modes have $p^{-} \sim \frac{1}{L} \Longrightarrow \lambda=$
    - $p_{c}^{2} \sim q^{2} \sim \nu \cdot \frac{1}{L}$ a semi-hard scale for thin medium!

