A renormalization group analysis of medium-modified fragmentation in SIDIS

XXX International Workshop on Deep-Inelastic Scattering and Related Subjects.

Weiyao Ke, Los Alamos National Laboratory In collaboration with Ivan Vitev, 2301.11940 and works in preparation Mar 29, 2023

Fragmentation in cold nuclear matter via semi-inclusive DIS

SIDIS with nuclear targets probes parton dynamics in cold nuclear matter. An interplay of jet energy scale $(Q, E = z\nu)$ and multiple medium scales:

- In-medium path length *L*.
- ullet Mean free path of parton-medium rescattering λ_g .
- Inverse scattering range of rescattering $\xi \gtrsim \Lambda_{\rm QCD}$.

1

Sizeable nuclear modifications in SIDIS observed at EMC, HERMES, CLAS

$$R_{A}^{h} = \frac{N_{eA \to \pi^{0}}(z_{h}, p_{T}^{2}; \nu, Q^{2})}{N_{ed \to \pi^{0}}(z_{h}, p_{T}^{2}; \nu, Q^{2})}$$

$$N_{eX \to h} = \frac{d\sigma_{eX \to h}}{d\nu dQ^{2}dz_{h}dp_{T}^{2}} / \frac{d\sigma_{eX}}{d\nu dQ^{2}}$$
EMC ZPC52(1991)1–11
$$< \text{HERMES NPB780(2007)1-27}$$
CLAS PRC105(2022)015201

- Are these modifications (at least partly) perturbatively calculable?
- What are the NP inputs to understand data and to characterize the cold nuclear matter?

An EFT approach to in-medium parton dynamics: SCET_G

Soft-Collinear-Effective-Theory with Glauber gluon [A. Idilbi, A. Majumder PRD80(2009)054022, G. Ovanesyan, I. Vitev, JHEP06(2011)080].

- Collinear mode $p_c \sim (1, \lambda^2, \lambda)\nu$ and soft mode $p_s \sim (\lambda^2, \lambda^2, \lambda^2)\nu$ from SCET.
- Glauber gluon $q \sim (\lambda^2, \lambda^2, \lambda)\nu$. Background field from medium sources $(x_1, x_2, \cdots x_i, \cdots)$

$$A_G^{\mu,a}(q) = \sum_i \frac{-g_s e^{-iq^- x_i^+}}{q_\perp^2 + \xi^2} \langle X | J^{\mu,a} | i \rangle$$

- Medium-size sensitive modes have $p^- \sim \frac{1}{L} \Longrightarrow \lambda = \frac{1}{\sqrt{\nu L}}$.
 - $p_c^2 \sim q^2 \sim \nu \cdot \frac{1}{I}$ a semi-hard scale for thin medium!
 - $p_s^2 \sim 1/L^2$, non-perturbative.

An EFT approach to in-medium parton dynamics: SCET_G

Soft-Collinear-Effective-Theory with Glauber gluon [A. Idilbi, A. Majumder PRD80(2009)054022, G.

Ovanesyan, I. Vitev, JHEP06(2011)080] .

- Collinear mode $p_c \sim (1, \lambda^2, \lambda) \nu$ and soft mode $p_s \sim (\lambda^2, \lambda^2, \lambda^2) \nu$ from SCET.
- Glauber gluon $q \sim (\lambda^2, \lambda^2, \lambda)\nu$. Background field from medium sources $(x_1, x_2, \cdots x_i, \cdots)$

$$A_G^{\mu,a}(q) = \sum_i \frac{-g_s e^{-iq^- x_i^+}}{\mathsf{q}_\perp^2 + \xi^2} \langle X | J^{\mu,a} | i \rangle$$

- Medium-size sensitive modes have $p^- \sim \frac{1}{L} \Longrightarrow \lambda = \frac{1}{\sqrt{\nu L}}$.
 - $p_c^2 \sim q^2 \sim \nu \cdot \frac{1}{I}$ a semi-hard scale for thin medium!
 - $p_s^2 \sim 1/L^2$, non-perturbative.

Scale separation in a thin/dilute medium

- Consider eA DIS at moderately large x_B ($x_B \gtrsim 0.1$) such that $\frac{\nu}{L} \sim \frac{Q^2}{10x_BA^{1/3}} < Q^2$.
- ullet "The semi-hard scale $rac{
 u}{L}$ " \gg "the average q_T^2 transfer $\xi^2 rac{L}{\lambda_g}$ ".
- This work further assumes $L/\lambda_g = \mathcal{O}(1)$.

Scale separation in a thin/dilute medium

- Consider eA DIS at moderately large x_B ($x_B \gtrsim 0.1$) such that $\frac{\nu}{L} \sim \frac{Q^2}{10x_BA^{1/3}} < Q^2$.
- "The semi-hard scale $\frac{\nu}{L}$ " \gg "the average q_T^2 transfer $\xi^2 \frac{L}{\lambda_g}$ ".
- This work further assumes $L/\lambda_g = \mathcal{O}(1)$.

The single-hadron SIDIS cross section with $\nu/L \gg \xi^2$

$$\frac{d\sigma_{ep\to h}}{dx_B dQ^2 dz_h} = \frac{2\pi\alpha_e^2}{Q^4} \sum_{i,j} \underbrace{e_q^2 f_{i/A}(x_B) \otimes C_{ij}^h(x,z)}_{F_{ij}(z)} \otimes d_{h/j}(z_h)$$

$$\frac{d\sigma_{eA\to h}}{dx_B dQ^2 dz_h} = \sum_{i,j} \frac{2\pi\alpha_e^2}{Q^4} \left[F_{ij}(z) + \Delta F_{ij}^{\text{med}}(z) \right] \otimes d_{h/j}(z_h)$$

- $\Delta F_{ij}^{\mathrm{med}}(z) = F_{ik}^{(0)} \otimes P_{kj}^{\mathrm{med}(1)}$ are corrections from medium-induced parton splittings.
- $P_{kj}^{\text{med}(1)}$ are complicated, and past studies often rely on numerical approach/MC.
- We use analytic approach to gain understanding & insights for in-medium factorization.

The key observation: $P_{ij}^{\text{med}(1)}$ constains endpoint divergences

• Endpoint divergences appears because all masses (ξ^2 , etc) are dropped according to collinear power counting $\xi^2 \ll \nu/L$. For example, the flavor non-singlet spectrum

$$\Delta F_{\rm NS}^{\rm med}(z) = \int_{z}^{1} \frac{dx}{x} F_{\rm NS}(\frac{z}{x}) P_{qq}^{\rm med(1)}(x) + \text{virtual term.}$$

$$P_{qq}^{\rm med(1)}(x) = A(\alpha_{s}, \cdots) \cdot \frac{P_{qq}^{\rm vac(0)}(x)}{[x(1-x)]^{1+2\epsilon}} \cdot \left[\frac{\mu^{2}L}{\chi z \nu}\right]^{2\epsilon} \cdot C_{n} \Delta_{n}(x)$$

• They can be regulated using dimension regularization ($d = 4 - 2\epsilon$),

$$\Delta F_{\rm NS}(z) = A(\alpha_s, \cdots) \left(\frac{1}{2\epsilon} + \ln \frac{\mu^2 L}{\chi z \nu} \right) 2C_F \left[2C_A \left(-\frac{d}{dz} + \frac{1}{z} \right) + \underbrace{\frac{C_F}{z}}_{x \to 0} \right] F_{\rm NS}(z) + \text{F.O.}$$

• Absorb divergence with an in-medium renormalization $F_{ij} \longrightarrow \left(M_{ik}^{(0)} + \frac{1}{\epsilon}M_{ik}^{(1)}\right) \otimes F_{kj}$. It suggests another relevant sector (collinear-soft) as μ^2 approaches ξ^2 (or $\xi^2 L/\lambda_g$).

The key observation: $P_{ij}^{\text{med}(1)}$ constains endpoint divergences

• Endpoint divergences appears because all masses (ξ^2 , etc) are dropped according to collinear power counting $\xi^2 \ll \nu/L$. For example, the flavor non-singlet spectrum

$$\Delta F_{\rm NS}^{\rm med}(z) = \int_{z}^{1} \frac{dx}{x} F_{\rm NS}(\frac{z}{x}) P_{qq}^{\rm med(1)}(x) + \text{virtual term.}$$

$$P_{qq}^{\rm med(1)}(x) = A(\alpha_{s}, \cdots) \cdot \frac{P_{qq}^{\rm vac(0)}(x)}{[x(1-x)]^{1+2\epsilon}} \cdot \left[\frac{\mu^{2}L}{\chi z \nu}\right]^{2\epsilon} \cdot C_{n} \Delta_{n}(x)$$

• They can be regulated using dimension regularization ($d = 4 - 2\epsilon$),

$$\Delta F_{\rm NS}(z) = A(\alpha_s, \cdots) \left(\frac{1}{2\epsilon} + \ln \frac{\mu^2 L}{\chi z \nu} \right) 2C_F \left[\underbrace{2C_A \left(-\frac{d}{dz} + \frac{1}{z} \right)}_{\text{from } x \to 1} + \underbrace{\frac{C_F}{z}}_{x \to 0} \right] F_{\rm NS}(z) + \text{F.O.}$$

• Absorb divergence with an in-medium renormalization $F_{ij} \longrightarrow \left(M_{ik}^{(0)} + \frac{1}{\epsilon}M_{ik}^{(1)}\right) \otimes F_{kj}$. It suggests another relevant sector (collinear-soft) as μ^2 approaches ξ^2 (or $\xi^2 L/\lambda_g$).

The key observation: $P_{ij}^{\text{med}(1)}$ constains endpoint divergences

• Endpoint divergences appears because all masses (ξ^2 , etc) are dropped according to collinear power counting $\xi^2 \ll \nu/L$. For example, the flavor non-singlet spectrum

$$\Delta F_{\mathrm{NS}}^{\mathrm{med}}(z) = \int_{z}^{1} \frac{dx}{x} F_{\mathrm{NS}}(\frac{z}{x}) P_{qq}^{\mathrm{med}(1)}(x) + \text{virtual term.}$$

$$P_{qq}^{\mathrm{med}(1)}(x) = A(\alpha_{s}, \cdots) \cdot \frac{P_{qq}^{\mathrm{vac}(0)}(x)}{[x(1-x)]^{1+2\epsilon}} \cdot \left[\frac{\mu^{2}L}{\chi z \nu}\right]^{2\epsilon} \cdot C_{n} \Delta_{n}(x)$$

ullet They can be regulated using dimension regularization ($d=4-2\epsilon$),

$$\Delta F_{\rm NS}(z) = A(\alpha_s, \cdots) \left(\frac{1}{2\epsilon} + \ln \frac{\mu^2 L}{\chi z \nu} \right) 2C_F \left[2C_A \left(-\frac{d}{dz} + \frac{1}{z} \right) + \underbrace{\frac{C_F}{z}}_{x \to 0} \right] F_{\rm NS}(z) + \text{F.O.}$$

• Absorb divergence with an in-medium renormalization $F_{ij} \longrightarrow \left(M_{ik}^{(0)} + \frac{1}{\epsilon}M_{ik}^{(1)}\right) \otimes F_{kj}$. It suggests another relevant sector (collinear-soft) as μ^2 approaches ξ^2 (or $\xi^2 L/\lambda_g$).

RG equations for the collinear sector

• Define $\tau(\mu^2) = \frac{\rho_{\mathcal{G}} L^2}{\nu} \frac{\pi B}{2\beta_0} \left[\alpha_{\mathcal{S}}(\mu^2) - \alpha_{\mathcal{S}} \left(\chi \frac{z\nu}{L} \right) \right]$ evolving from $\mu^2 = \chi \frac{z\nu}{L}$ down to ξ^2 . Depend on Q^2 only through coefficients B and $\chi > 3.0$.

$$\frac{\partial F_{\rm NS}(\tau,z)}{\partial \tau} = \left(4C_F C_A \frac{\partial}{\partial z} - \frac{4C_F C_A + 2C_F^2}{z}\right) F_{\rm NS}$$

A "traveling wave" solution for F_{NS}

$$F_{\rm NS}(\tau,z) = \frac{F_{\rm NS}\left(0,z+4C_FC_A\tau\right)}{(1+4C_FC_A\tau/z)^{1+C_F/(2C_A)}}$$

The primary effect: shift spectra by $\delta z = -4C_F C_A \tau$.

The parton energy loss picture $\Delta E = \nu \delta z \propto \rho_G L^2$.

RG equations for the collinear sector

• Define $\tau(\mu^2) = \frac{\rho_{\mathcal{G}} L^2}{\nu} \frac{\pi B}{2\beta_0} \left[\alpha_{\mathcal{S}}(\mu^2) - \alpha_{\mathcal{S}} \left(\chi \frac{z\nu}{L} \right) \right]$ evolving from $\mu^2 = \chi \frac{z\nu}{L}$ down to ξ^2 . Depend on Q^2 only through coefficients B and $\chi > 3.0$.

$$\frac{\partial F_{\rm NS}(\tau,z)}{\partial \tau} = \left(4C_F C_A \frac{\partial}{\partial z} - \frac{4C_F C_A + 2C_F^2}{z}\right) F_{\rm NS}$$

• Flavor singlets F_g and $F_f = F_q + F_{\bar{q}}$, for f = u, d, s.

$$\frac{\partial F_f}{\partial \tau} = \left(4C_F C_A \frac{\partial}{\partial z} - \frac{4C_F C_A + 2C_F^2}{z}\right) F_f + 2C_F T_F \frac{F_g}{z},$$

$$\frac{\partial F_g}{\partial \tau} = \left(4C_A^2 \frac{\partial}{\partial z} - \frac{2N_f C_F}{z}\right) F_g + 2C_F^2 \sum_f \frac{F_f}{z}.$$

7

Comparison with HERMES data [NPB780(2007)1-27]

- Baseline: NLO DIS and SIDIS cross sections. NNFF1.0LO vacuum FF [EPJC77(2017)516] and nNNPDF3.0 nuclear PDF [EPJC82(2022)507] .
- ullet Calculated with averaged HERMES $\langle Q^2
 angle pprox 2.25$ GeV, $\langle
 u
 angle = 12$ GeV.
- Central values tuned to $\xi=0.35$ GeV, $\rho_G=0.4~{\rm fm}^{-3}$. Band: $\left(\frac{2}{3},\frac{3}{2}\right)\rho_G$
- Good agreement except for the region $z_h \to 1$ (not dominated by collinear modes).

Comparison with SIDIS at EMC [ZPC52(1991)1–11]

- Such effects were observed at EMC at higher $\langle Q^2 \rangle = 11 \text{ GeV}^2$ and $\langle \nu \rangle = 62 \text{ GeV}$.
- Same value of parameters (ξ, ρ_G) as used for HERMES. Bands: $(\frac{2}{3}, \frac{3}{2})\xi^2$, $(\frac{2}{3}, \frac{3}{2})\rho_G$.

Projection for EIC: ePb versus ep

- Same parameters, but expects smaller effects at small x_B as parton too energetic in the nuclear rest frame. From left to right: $\nu = 107$ GeV, 36 GeV, 21 GeV
- EIC will enable a fully differential scan in a large range of ν , Q^2 .

Towards a factorization formula for fragmentation in eA?

- Medium-size sensitive modes have $p^- \sim 1/L$.
- We have identified the semi-hard scale in the problem $p^2 \sim \nu/L$ for a thin medium.
- Ongoing & preliminary: including medium-induced collinear-soft CS_m with $p^2 \gtrsim \xi^2$. Relevant for the correct description as $z_h \to 1$.
- A formal definition of nuclear NP inputs.

Summary and Future

- In-medium fragmentation is a multi-scale problem and contains perturbative & NP physics.
- For thin medium, we identify the semi-hard scale ν/L for medium-induced collinear modes \implies a region for perturbative treatment.
- The first in-medium NLO calculation using the RG analysis.
 A partial-differential RG equation follows from endpoint divergences in the collinear sector.
 Simple RG solutions were obtained with a clear physical interpretation.
- Phenomenological parameters ξ^2, ρ_G tuned to HERMES SIDIS data \Longrightarrow good descriptive power at both HERMES and EMC energy.
- Towards a factorization formulation and formal definition of NP nuclear parameters.

Connection to the modified DGLAP equation

The medium-modified DGLAP are widely used phenomenology approach in both eA and AA

$$\frac{\partial}{\partial \ln \mu^2} D_{h/i} = [P_{ij}^{\text{vac}} + \Delta P_{ij}^{\text{med}}]_+ \otimes D_{h/j}$$

ullet In numerical solver, all divergences in $\Delta P_{ij}^{
m med}$ are screened by a mass

$$k_{\perp}^2 > \xi^2 \quad \Rightarrow \quad x, (1-x) > \frac{\xi^2}{\mu^2}$$

• The mDGLAP (a simplified version) can be Taylor expanded around, e.g., x = 1,

$$\frac{\partial F_{\text{NS}}}{\partial \ln \mu^2} = 4C_F C_A A_0 \int_0^{1-\frac{\mu_D^2}{\mu^2}} \frac{4}{\pi} \frac{\Phi(\frac{\mu^2 L}{2E})}{\frac{\mu^2 L}{2E}} \frac{\left(\frac{x}{z}\right) F_{\text{NS}}\left(\frac{z}{x}\right) - \frac{F_{\text{NS}}(z)}{z}}{(1-x)^2} dx$$

$$= \frac{4}{\pi} \frac{\Phi(\frac{\mu^2 L}{2E})}{\frac{\mu^2 L}{2E}} \times 4C_F C_A A_0 \ln \frac{\mu^2}{\mu_D^2} \left[\frac{\partial F_{\text{NS}}}{\partial z} - \frac{F_{\text{NS}}}{z}\right] + \text{non-log-enhanced terms}$$

• Same leading-log physics as the RG approach (if one chooses $\mu^2={\bf k}_\perp^2/[x(1-x)])$.

Pion vs Kaon

• Change to DSS parametization for π^\pm and K^\pm fragmentation function. D. Florian et al. PRD75(2007)114010 and PRD91(2015)014035

Ongoing: higher-order in opacity?

- Complexity of in-medium splitting function blows up with opacity $N = 1, 2 \cdots$.
- Assume the leading contribution still comes from the endpoint region, especially near x = 1.
- The opacity N = 2 contributions leads to two types of corrections:

$$\alpha_s C_R \frac{\mu_G^2}{E/L} \cdot \underbrace{\left[a_1 \partial_z + \cdots + \underbrace{a_2 \frac{\mu_G^2}{\xi^2} \partial_z + b_2 \frac{\mu_G^2}{E/L} \partial_z^2 + \cdots \right]}_{N=2}, \qquad \mu_G^2 = \alpha_s \rho_G L$$

$$= \alpha_s C_R \frac{\mu_G^2}{E/L} \cdot \left[\left(a_1 + a_2 \frac{\mu_G^2}{\xi^2} \right) \partial_z + b_2 \frac{\mu_G^2}{E/L} \partial_z^2 + \cdots \right]$$

It is interesting to investigate whether the opacity expansion leads to a gradient expansion of the evolution equation.