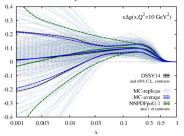
Precision Measurement of the Longitudinal Double-spin Asymmetry for Dijet Production at Intermediate Pseudorapidity in Polarized proton+proton Collisions at $\sqrt{s} = 200$ GeV

Zilong Chang for the STAR collaboration

CEEM, Indiana University

March 29, 2023

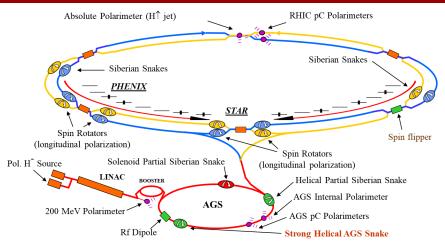
・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの


The evolving story of the proton spin

- The naive three valence quark picture evolves into a highly complex system of quarks, anti-quarks and gluons
- The proton spin puzzle: $\langle S_z^p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_z^q \rangle + \langle L_z^g \rangle$ Jaffe and Manohar, Nucl.Phys.B,337, 509
- Precise DIS measurements have shown that quarks

contribute around 30%: $\Delta\Sigma(Q^2 = 3(GeV/c)^2) =$

 $0.32\pm0.02_{\mathrm{stat}}\pm0.04_{\mathrm{syst}}\pm0.05_{\mathrm{evol}}$, (compass,


PLB769.34)

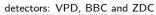
- However DIS can only constrain ΔG through scaling violations, with limited (x, Q^2) coverage at existing facilities
- Hadronic collisions such as pp allow direct access to ΔG through hard scatterings
- The global fit with pp data, DSSV'14, shows that gluons could contribute more than 50%: $\int_{0.01}^{1} dx \Delta g(x,Q^2=10~{
 m GeV}^2)=0.30\pm 0.11$, (Daniel de Florian, et al., PRD100,114027)

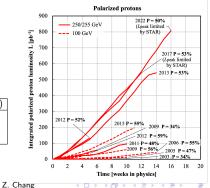
• $\langle L_z^{q,g} \rangle$: not constrained yet


RHIC, the world's only polarized hadron collider

- 2.4 mile in circumference, two lane "racetrack"
- Spin rotators provide the choice of polarization orientations, longitudinal or transverse
- Beam polarization is between 50 to 65%

(日) (四) (三) (三) (三) (3,0)


STAR experiment

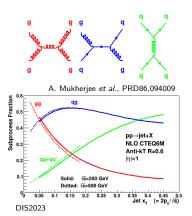


• Final longitudinally polarized datasets

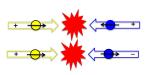
Year	\sqrt{s} (GeV)	Sampled L (pb ⁻¹)	Polarization (%)
2012	510	82	53%
2013	510	300	55%
2015	200	52	58%

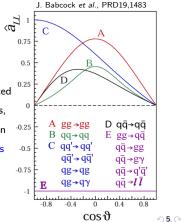
- Full 2π coverage in azimuthal
- Tracking with TPC: $|\eta| < 1.3$
- EM energy and triggering with: BEMC: $-1.0 < \eta < 1.0$ EEMC: $1.0 < \eta < 2.0$
- Spin-sorted relative luminosity monitoring

~ 4 ~

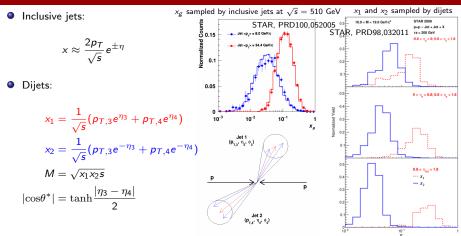

DIS2023

Longitudinal double-spin asymmetry for jets


• In longitudinally polarized *pp* collisions, define:


$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto \sum_{a,b} \Delta f_a \otimes \Delta f_b \otimes \hat{a}_{LL}$$

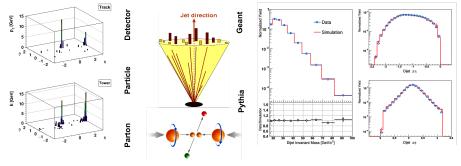
Leading order hard QCD processes: qg, qq and gg


At RHIC energies, jet production is dominated by gluon contributions, and large \hat{a}_{LL} for gluon processes \rightarrow jet A_{LL} is sensitive to ΔG

Z. Chang

Dijet measurements

- Dijet rapidity topologies allow to sample x₁ and x₂ simultaneously in different ranges, as well as cosθ* on which the â_{LL} depends
- To sample low x gluons, either increase \sqrt{s} or increase η
- This analysis focuses on the dijet production with one jet located at 0.8 < η < 1.8, the endcap dijet, which samples x_g as low as ~ 0.02 at $\sqrt{s} = 200 \text{ GeV}$


DIS2023

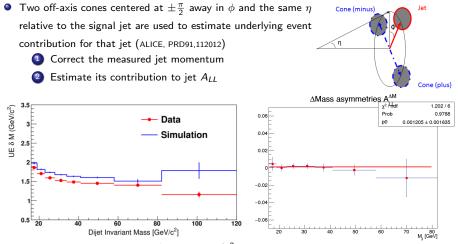
```
Z. Chang
```

(ロ) (回) (E) (E) (E) (0.000)

Jet studies at STAR

- Inputs to jet finder: charged TPC tracks, and EM towers
- Anti-k_T algorithm with R = 0.6 for 200 GeV and R = 0.5 for 510 GeV, less sensitive to underlying events and soft backgrounds

• PYTHIA 6 tuned to RHIC data based on the default Perugia 2012 tune: reduced $P_{90} = 0.213$ from 0.24 $\sigma \sim \frac{1}{(p_T^2 + p_{T,0}^2)^2}$, where $p_{T,0} = (2.65 \text{ GeV}) \times (\frac{\sqrt{s}}{7000 \text{ GeV}})^{P_{90}}$ (STAR, PRD100,052005)


• Jet reconstructions from partons, particles, and simulated detector response

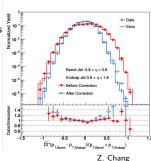
Simulated jet quantities match data very well

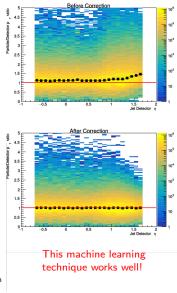
DIS2023

Z. Chang

Underlying event correction

• Underlying event correction $\delta M < 2 \text{ GeV}/c^2$

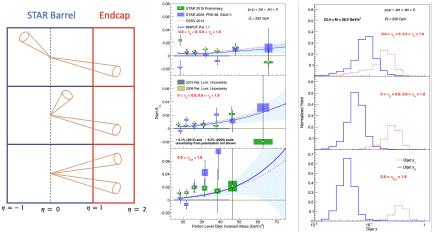

Contribution to jet A_{LL} at the level of 10⁻³


080

STAR, PRD100,052005

Low tracking efficiency in the endcap region

- TPC covers up to $\eta \sim 1.3$, and the tracking efficiency decreases rapidly as η increases
- Significant loss of charged particles in the endcap region
- Multilayer perceptron, a supervised machine-learning regression provided by the ROOT TMVA library, corrects the measured jet p_T to its corresponding particle jet p_T
- Input jet quantities: *p_T*, detector η relative to the detector center, and neutral energy fraction
- *p_T* imbalance for dijets with one jet in the barrel and the other in the endcap

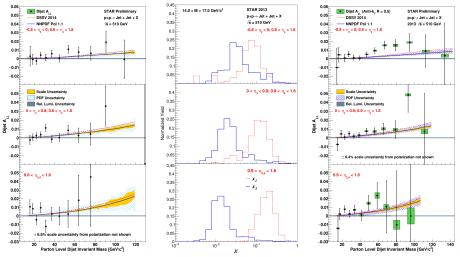


99 C

Endcap dijet A_{LL} at $\sqrt{s}=200~{ m GeV}$

• Two barrel-endcap (East-endcap and West-endcap) and endcap-endcap topologies

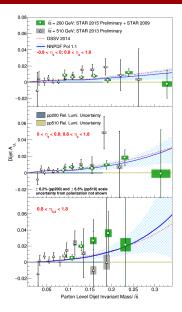
- The statistical uncertainty is smaller by almost a factor of 2 compared to the 2009 data
- Our data agree with both DSSV'14 and NNPDF pol 1.1 predictions, except for the endcap-endcap topology at low invariant mass
- More asymmetric x₁ and x₂ as both jets are in the endcap region


DIS2023

Z. Chang

<ロ> <四> <四> <三> <三> <三> <三> <三> <三</td>

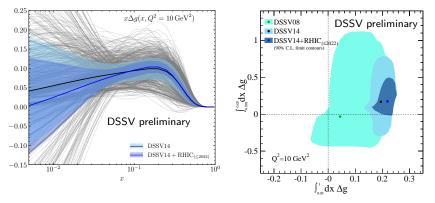
Endcap dijet A_{LL} at $\sqrt{s} = 510$ GeV


• Endcap dijet A_{LL} at $\sqrt{s} = 510$ GeV from the 2012 and 2013 data

• The highest \sqrt{s} and the largest η , permitting to reach the smallest $x_g \sim 0.01$ at STAR

DIS2023

Final endcap dijet A_{LL}s


- A_{LL} s at $\sqrt{s} = 200$ and 510 GeV agree with each other as a function of $x_T = \frac{M}{\sqrt{s}}$
- No clear preference of a polarized PDF global fit for the DSSV'14 and NNPDF pol 1.1 fits
- Together with inclusive jet and dijet A_{LL} in mid-rapidity $|\eta| < 1$, (please refer B. Surrow's talk in the same session) they will conclude the analysis of jet A_{LL} at STAR
- Final publications for both results are in progress
- Gluon polarizations will be revisited in the future EIC

- **・**ロト ・ (日) ・ ・ (目) ・ (目) ・ (12, ()

ΔG from the DSSV group

• $x\Delta g(x)$ vs. x and $\int dx\Delta g$ from the DSSV group

- The group included RHIC data released as of 2022, i.e., STAR inclusive jet and dijet A_{LL} and PHENIX pion A_{LL}
- With RHIC data, significant improvements on ΔG compared to 2008 results: $\int_{0.15}^{1} dx \Delta g = 0.22 \pm 0.03$, at x > 0.05 and $Q^2 = 10 \text{ GeV}^2$, almost 8σ away from zero
- The white paper of the RHIC cold QCD program: EC, Aschenauer et al., arXiv:2302.00605 [nucl-ex]

DIS2023

(ロ) (四) (三) (三) (三) (13, ())

- At √s = 200 and 510 GeV and with the jet kinematic coverage up to η of 1.8, the endcap dijet A_{LL} not only constrains the functional form of Δg(x) but also reaches the lowest possible x_g ~ 0.01
- STAR has demonstrated non-zero gluon polarizations in the proton from a series of precise measurements of inclusive jet and dijet A_{LL}
- As indicated by recent global fits, especially the DSSV group, gluons contribute about 40% of the total proton spin, when x > 0.5 and $Q^2 = 10 \text{ GeV}^2$
- With the completion of the longitudinal polarized data taking, two remaining endcap jet A_{LL} analyses from STAR are being prepared for final publications
- In addition, through W^{\pm} longitudinal single-spin asymmetry A_L , STAR has showed $\Delta \bar{u} > \Delta \bar{d}$ STAR, PRD,99,051102

★□ → ★ □ → ★ □ → ★ □ → 14, ○