

Supported in part by:

Office of Science

Measurement of Λ hyperon pair spin correlation in p+p collisions by the STAR experiment

Jan Vanek, for the STAR Collaboration Brookhaven National Laboratory DIS 2023, Michigan State University 03/29/2023

∧ POLARIZATION PUZZLE

- In the 70's, it was discovered that Λ hyperons are polarized in collisions of unpolarized p+Be collisions, which raised many questions G.Bunce, et al.: Phys.Rev.Lett. 36, 1113-1116 (1976)
- Over nearly 50 years, Λ polarization has been seen in p+p, p+A, e+p, e⁺e⁻ collisions up to collision energies about 40 GeV
 ATLAS: Phys. Rev. D 91, 032004 (2015) BELLE: Phys.Rev.Lett. 122, 042001 (2019)

• What is the origin of the Λ polarization?

- Does polarization of Λ depend on spin of the target/projectile?
- Is the observed Λ polarization an initial state effect or a final state effect?
- Is there Λ hyperon spin correlation present in high energy collisions? Parton spin correlation and entanglement? W. Gong, et al.: Phys.Rev.D 106 (2022) 3, L031501

03/29/202

• P_{Λ} is the Λ polarization

03/29/2023

Λ⁰: α₊ = 0.732 ± 0.014, Λ ⁰: α₋ = -0.758 ± 0.012 *n̂* is normal vector to the production plane

• Angle (θ^* , or θ_p) is measured between \hat{n} and momentum of proton (\vec{p}_{Λ}) in Λ 's rest frame

TRADITIONAL EXPERIMENTAL METHOD

• Single Λ polarization is measured via $\Lambda^0 \rightarrow p\pi^+$ decay channel

- In Λ rest frame, protons are emitted preferentially in direction of Λ spin
- The distribution of protons in Λ 's rest frame is then given by:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = 1 + \alpha P_{\Lambda}\cos(\theta^*)$$

MOTIVATION FOR A PAIR SPIN CORRELATIONS

- Single Λ polarization observed in collisions at low energies, but not at higher energies (e.g. RHIC) when measured with respect to production plane
- New, alternative approach is to measure spin correlations of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\Lambda}$ pairs
 - New choice of reference direction for polarization measurement spin direction of a different Λ ($\overline{\Lambda}$) in the same event
- Where could correlation of spins of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda}\overline{\Lambda}$ pairs come from in high energy collisions?
 - Initial parton spin correlations may result in final-state hadron spin correlation?
 - Can final-state effect, e.g., hadronization, generate spin correlation?
 - A Bell-type inequality test using Λ hyperon pair spin correlations in high energy collisions?
 W. Gong, et al.: Phys.Rev.D 106 (2022) 3, L031501

NEW EXPERIMENTAL METHOD

- Find $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda\overline{\Lambda}}$ pair(s) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
- Boost (anti-)proton from decay of the corresponding Λ $(\overline{\Lambda})$ to rest frame of its mother
 - Proton momenta in mother rest frame: \hat{a} , \hat{b}
- Measure angle θ^* between the two **boosted protons**
- The distribution of pair angle is given by:

 $\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = 1 + \alpha_1 \alpha_2 P_{\Lambda\Lambda} \cos(\theta^*)$

- A non-zero $P_{\Lambda\Lambda}$ would indicate spin correlation between the pair
- Possible thanks to high statistics p+p data-sets at STAR

03/29/202

STAR DETECTOR

- Solenoidal Tracker At RHIC
- Only running experiment at RHIC (2017-2022)
 - This year being joined by sPHENIX experiment
- Key subsystems for this analysis:
 - Solenoidal magnet
 - 0.5 T magnetic field
 - Time Projection Chamber (TPC)
 - Measurement of particle transverse momentum (p_T)
 - Particle identification (PID) based on energy loss in TPC gas
 - Time Of Flight detector (TOF)
 - Additional PID information
 - Suppression of background from pileup events

EVENT AND TRACK SELECTION, PID

- Data-set:
 - p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ (2012)
 - Ca. 400M minimum bias events
- Events with primary vertex close to center of STAR detector selected
- Track selection to ensure good track quality within geometrical acceptance
- Particle identification to obtain pure proton and pion sample
 - *TOF PID used only for Λ signal region determination, but not directly for the correlation study
- Decay topology to suppress combinatorial background from tracks originating from close to primary vertex

9/2023

A RECONSTRUCTION

- First step of the analysis is determination of signal region from invariant mass $(M_{\rm inv})$ spectra of $p\pi$ pairs
- Invariant mass spectra of $p\pi$ pair filled for unlike-sign (US) and like-sign (LS) charge combinations
 - LS provides good estimation of the combinatorial background
- The US-LS spectrum is fitted with Gaussian function
- The signal region is Gauss mean (from fit) $\pm 3\sigma$
- Done for Λ^0 and $\overline{\Lambda^0}$ separately in multiple $p_{\rm T}$ bins

• Total raw counts (N_{sig}) of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\overline{\Lambda}}$ pairs in 2012 200 GeV $p+\tilde{p}$ data sample with combinatorial background levels (N_{bkg})

A PAIRS IN DATA

- Λ and $\overline{\Lambda}$ candidates selected from M_{inv} window identified in previous step, but without TOF
 - TOF would reduce statistics significantly due to finite matching efficiency
 - Combinatorial background levels for Λ pairs are low even without TOF in the 2012 200 GeV p+p data
- Five different combinations of $p_{\rm T}$ of Λ ($\overline{\Lambda}$) in the pair
- Good statistics for all three pair combinations to perform the spin correlation measurement

$p_{\rm T}$ (GeV/c)	$\Lambda\overline{\Lambda}$		ΛΛ		$\overline{\Lambda}\overline{\Lambda}$	
	$N_{ m sig}$	$N_{ m bkg}$	$N_{ m sig}$	$N_{ m bkg}$	$N_{ m sig}$	$N_{ m bkg}$
$\Lambda_1: 0.5 - 5.0$ $\Lambda_2: 0.5 - 5.0$	32057	667	9630	363	6563	187
$\Lambda_1: 0.5 - 1.5$ $\Lambda_2: 0.5 - 1.5$	14062	184	4099	94	2573	48
$Λ_1: 0.5 - 1.5$ $Λ_2: 1.5 - 5.0$	6913	172	1990	82	1439	41
$Λ_1: 1.5 - 5.0$ $Λ_2: 0.5 - 1.5$	6883	124	2322	101	1621	43
$Λ_1: 1.5 - 5.0$ $Λ_2: 1.5 - 5.0$	4199	187	1219	86	930	55

A PAIRS IN PYTHIA

- $dN/d\cos(\theta^*)$ from PYTHIA 8.3 for $\Lambda\overline{\Lambda}$ (left), $\Lambda\Lambda$ (middle), and $\overline{\Lambda\Lambda}$ (right) pairs
 - 1B minimum bias PYTHIA events at $\sqrt{s} = 200 \text{ GeV}$
 - Only additional requirement is on $\Lambda(\overline{\Lambda})$ rapidity: |y| < 1
- $P_{\Lambda\Lambda} = 0$ in PYTHIA no Λ -hyperon pair spin correlations
- If non-zero $P_{\Lambda\Lambda}$ is observed in data, it would indicate possible spin correlations of Λ hyperons

SUMMARY

- We propose a new method for studying the origin of Λ hyperon polarization using Λ hyperon pair spin correlations
 - This new approach could provide additional insights on the topic
- Expect good statistical precision when using the 2012 dataset of 200 GeV p+p collisions to perform the proposed spin correlation measurement
- PYTHIA does not predict any Λ hyperon pair spin correlation signal
 - Any observed non-zero $P_{\Lambda\Lambda}$ in data would indicate Λ hyperon pair spin correlations

OUTLOOK

Near future

- Determine detector efficiency and acceptance correction for $dN/d\cos\theta^*$ using 2012 datset
- Include 2017 data for p+p collisions at $\sqrt{s} = 510$ GeV (2017)
 - Ca. 500M minimum bias events
- Longer term possibilities
 - Use data with STAR forward upgrade to study the Λ hyperon pair spin correlations at large η range (small x_F)
 - Λ hyperon pair spin correlations in other collision systems at STAR (p+Au, d+Au, Au+Au)
- General outlook
 - Perform spin correlation measurement on data from other experiments, e.g. where single Λ polarization has been observed

THANK YOU FOR ATTENTION

03/29/2023

BACKUP

Jan Vanek, DIS 2023

EVENT AND TRACK SELECTION, PID

Data-set:	Event selection	$ V_{z} < 30 \text{ cm}$	
• p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ (2012)		p_{T} > 150 MeV/c	
 Ca. 400M minimum bias events 		$ \eta < 1$	
 Events with primary vertex close to center of STAP detector selected 	Track selection	nHitsFit > 20	
		nHitsFit/nHitsMax > 0.52	
 Track selection to ensure good track quality within geometrical acceptance 		$ n\sigma_{\pi} < 3$	
	Particle identification	$ n\sigma_{\rm p} < 2$	
 Particle identification to obtain pure proton and pion sample 		$ 1/\beta - 1/\beta_{\pi} < 0.03*$	
• *TOF PID used only for Λ signal region		$DCA_{\pi-PV} > 0.3 \text{ cm}$	
determination, but not directly for the		$DCA_{p-PV} > 0.1 \text{ cm}$	
	Decay topology ^0	$DCA_{pair} < 1 cm$	
 Decay topology to suppress combinatorial background from tracks originating from 		$2 \text{ cm} < L_{\text{dec}} < 25 \text{ cm}$	
close to primary vertex		$\cos(\theta) > 0.996$	
 of STAR detector selected Track selection to ensure good track quality within geometrical acceptance Particle identification to obtain pure proton and pion sample *TOF PID used only for Λ signal region determination, but not directly for the correlation study Decay topology to suppress combinatorial background from tracks originating from close to primary vertex 	Particle identification Decay topology Λ^0	$\begin{aligned} & \text{nHitsFit/nHitsMax} > 0.52 \\ & n\sigma_{\pi} < 3 \\ & n\sigma_{p} < 2 \\ & 1/\beta - 1/\beta_{\pi} < 0.03^{*} \\ & \text{DCA}_{\pi\text{-PV}} > 0.3 \text{ cm} \\ & \text{DCA}_{p\text{-PV}} > 0.1 \text{ cm} \\ & \text{DCA}_{pair} < 1 \text{ cm} \\ & 2 \text{ cm} < L_{dec} < 25 \text{ cm} \\ & \cos(\theta) > 0.996 \end{aligned}$	

