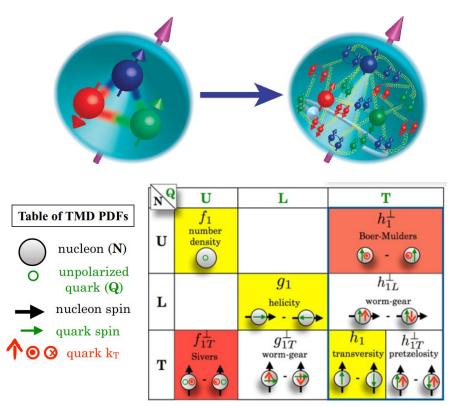


Dillon Fitzgerald for the PHENIX Collaboration

March 30, 2023

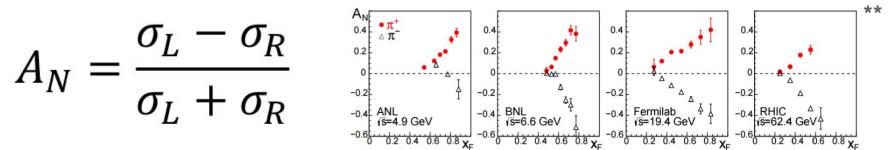


Spin Physics and Proton Structure

Our understanding of proton structure in terms of constituent quarks and gluons has evolved greatly in the past few decades

- We know that valence quarks do not carry all of the proton spin...
 - How is the spin of quarks and gluons correlated with proton spin?
 - How is the orbital motion of quarks and gluons correlated with proton spin?

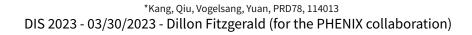
Transverse Single Spin Asymmetries (TSSAs)



RIGHT

LEFT

 $x_{r} = 2p_{7}/\sqrt{s}$


- $p^+ + p \text{ or } p^+ + A \text{ initial state}$
- Measure particle production on either side of the polarized proton-going direction (measure azimuthal asymmetry)
- Perturbative QCD predicted to contribute negligibly to TSSAs in the past (<1%)*
 - Recent calculations suggest possible contributions at 2 loops (<u>PRD100</u>, <u>094027</u>)
- Large TSSA measurements imply nonperturbative spin-momentum and spin-spin correlations within proton

*G. L. Kane, J. Pumplin, and W. Repko PRL 41, 1689 (1978). **C.A. Aidala, S.D. Bass, D. Hasch, and G.K. Mallot, Rev. Mod. Phys. **85** 655 (2013).

DIS 2023 - 03/30/2023 - Dillon Fitzgerald (for the PHENIX collaboration)

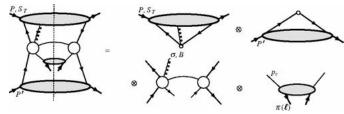
Transverse Single Spin Asymmetries (TSSAs)

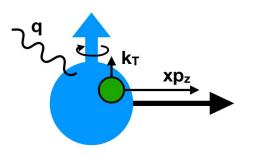
Theoretical frameworks for describing measured TSSAs

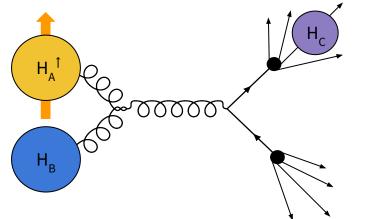
- Higher Twist Effects
 - Collinear, so only need one hard scale (Q)
 - Access via p_T of measured particle
 - \circ Need higher twist (i.e. twist 3) to describe observed TSSAs
 - **Higher Twist:** Power suppressed terms in factorization expansion by (1/Q)ⁿ⁻²
 - Twist 3 suppressed by 1/Q

Transverse Momentum Dependent Functions (TMDs)

- Explicit dependence on transverse momentum of partons within the proton
- Need access to both a hard and soft scale with sufficient scale separation (i.e. Q and k_T with Q >> k_T)


Unification of two frameworks has been demonstrated


 $T_{q,F}(x,x) = \frac{1}{M_p} \int d^2 \vec{k}_{\perp} \vec{k}_{\perp}^2 q_T(x,k_{\perp})^*$ Twist 3 correlator (qgq) Sivers TMD PDF



Quantum interference between 2 → 2 process and itself with extra gluon with similar x

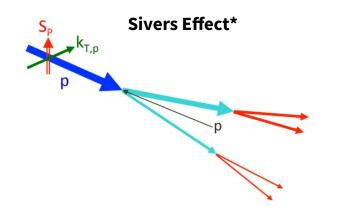
Twist 3 Correlators

- Terms with A, B in subscript \rightarrow initial state effects
- Terms with C in subscript → final state effects
- Terms with (3) in superscript \rightarrow twist 3 correlators

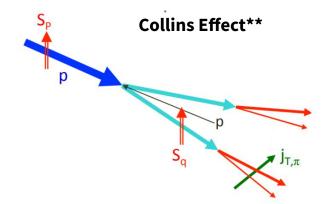
$$\Delta N \propto \sum_{abc} \phi_{a/A}^{(3)}(x_1, x_2, \vec{s_\perp}) \otimes \phi_{b/B}(x') \otimes \hat{\sigma} \otimes D_{c \to C}(z) + \sum_{abc} \delta q_{a/A}(x, \vec{s_\perp}) \otimes \phi_{b/B}^{(3)}(x'_1, x'_2) \otimes \hat{\sigma}' \otimes D_{c \to C}(z) + \sum_{abc} \delta q_{a/A}(x, \vec{s_\perp}) \otimes \phi_{b/B}(x') \otimes \hat{\sigma}'' \otimes D_{c \to C}^{(3)}(z_1, z_2).$$

Measuring A_N for different final state particles gives access to specific terms in the sum

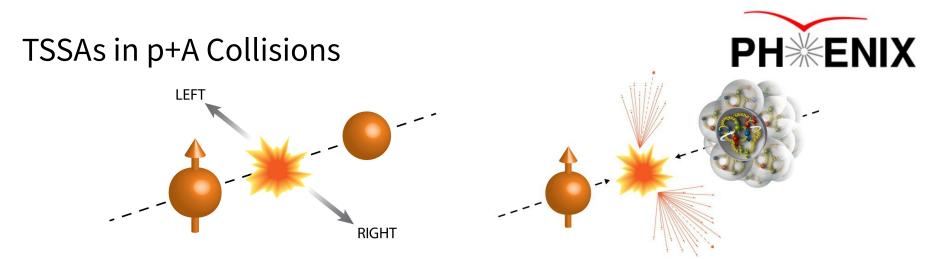
π⁰ and η production is sensitive to initial and final state spin-momentum correlations, related to the Sivers (initial state) and Collins (final state) effects



*PRD 74 114013 (2006) DIS 2023 - 03/30/2023 - Dillon Fitzgerald (for the PHENIX collaboration)


Transverse Momentum Dependent Functions

The following mechanisms are expected to contribute to TSSAs for π^0 and η production in hadronic collisions


Initial state correlation between proton spin (S_p) and parton transverse momentum $(k_T) \rightarrow$ polarized proton generates asymmetric PDF

Convolution of Collins fragmentation function [final state correlation of quark spin (S_q) and hadron transverse momentum w.r.t. quark momentum (j_T)] and transversity [initial state correlation of proton spin (S_p) and quark spin (S_q)] \rightarrow polarized quark undergoes asymmetric fragmentation

*Phys.Rev.D 41 (1990) 83; **Nucl.Phys.B 396 (1993) 161-182 Figures from L. Nogach 2006 RHIC AGS Users Meeting DIS 2023 - 03/30/2023 - Dillon Fitzgerald (for the PHENIX collaboration)

The 2015 RHIC dataset is the only collider dataset with polarized proton on heavy nuclei collisions --- what can we learn from this?

- How are transverse spin observables affected by the extended nuclear environment?
 - In a factorized picture, one would expect only modification to final state spin-momentum correlations in the process of hadronization as scattered partons pass through nuclear matter, while initial state spin-momentum correlations are unmodified
 - Allowing for factorization breaking effects, the larger nuclear remnant in p+A collisions could potentially modify the observed TSSAs (PRD 81 094006 (2010), PRD 88 014002 (2013))
- Potential to probe gluon saturation effects in the nucleus (Phys.Rev.D 84 (2011) 034019)

 $\begin{array}{c|c} \text{Below the} & \left. \frac{A_N^{pA \to h}}{A_N^{pp \to h}} \right|_{P_{h\perp}^2 \ll Q_s^2} \approx \frac{Q_{sp}^2}{Q_{sA}^2} e^{\frac{P_{h\perp}^2 \delta^2}{Q_{sp}^4}} & \text{Above the} & \left. \frac{A_N^{pA \to h}}{A_N^{pp \to h}} \right|_{P_{h\perp}^2 \gg Q_s^2} \approx 1 \\ \text{scale} & \text{scale} & \end{array}$

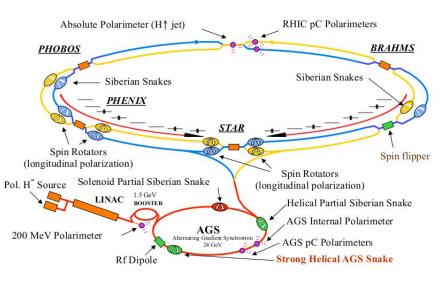
DIS 2023 - 03/30/2023 - Dillon Fitzgerald (for the PHENIX collaboration)

Existing Collider p+A TSSA Measurements

- Charged hadron TSSA at intermediate rapidity (1.4 < | η | < 2.4) [PHENIX] -- See Jeongsu Bok's talk Tuesday @ 16:30
 - <u>https://inspirehep.net/literature/1725616</u> (A dependence)
 - <u>https://inspirehep.net/literature/2641474</u> (p_T and x_F dependence)
 - These measurements show strong nuclear suppression of A_N for charged hadrons at intermediate rapidity
- J/ ψ TSSA at intermediate rapidity (1.2 < | η | < 2.2) [PHENIX]
 - <u>https://inspirehep.net/literature/1671782</u>
 - \circ p+p and p+A are mostly consistent, further investigation is needed for low p_T p+Au asymmetries
- π^0 TSSA at forward rapidity (2.7 < η < 3.8) [STAR]
 - <u>https://inspirehep.net/literature/1836342</u>
 - \circ ~ These measurements show moderate nuclear suppression of $A^{}_{N}$ for π^{0} at forward rapidity
- neutron TSSA at far forward rapidity ($\eta > 6.8$) [PHENIX]
 - <u>https://inspirehep.net/literature/1520869</u> (A dependence)
 - <u>https://inspirehep.net/literature/1944868</u> (p_T and x_F dependence)
 - These measurements show strong nuclear dependence of A_N for neutrons at far forward rapidity, understood to be due to the interplay of electromagnetic and hadronic interactions in ultra peripheral collisions
- π^0 and η TSSA at midrapidity ($|\eta| < 0.35$) -- **Presented in this talk**
 - <u>https://inspirehep.net/literature/2641468</u>

In summary: p+A TSSA data have yielded surprises and more investigation is needed to understand and interpret what has been measured

Spin Physics at RHIC

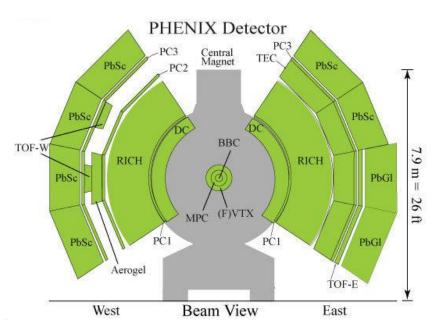

Extremely versatile collider!

- World's first polarized p+p collider
 - As well as p⁺+Al, p⁺+Au
- Capable of running with various collision energies and collision species
- Home to general purpose detectors (s)PHENIX and STAR

Collisions with polarized proton beams allow for a vast spin physics program

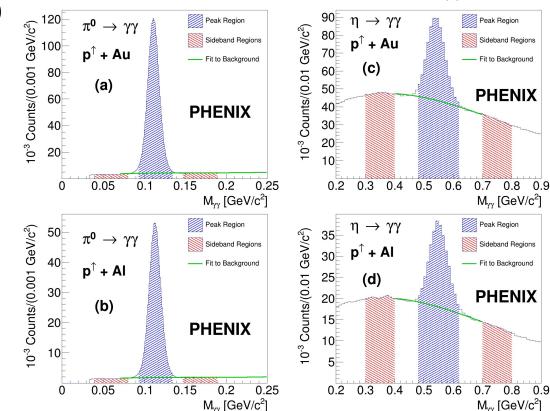
• A richer substructure of the nucleon can be studied when polarization is taken into account

RHIC is the world's first polarized proton collider



Midrapidity π^0 and η Detection at PHENIX

- Acceptance: $\Delta \phi = 0.5\pi$ per arm, $|\eta| < 0.35$
- Electromagnetic Calorimeter (EMCal) measures energy deposits
 - Primary detector for photons
- EMCal trigger
 - Used in coincidence with a minimum bias trigger to select high p_T photons
- Drift chamber (DC) and pad chambers (PCs) measure charged particle momenta
 - Used to veto charged tracks



π^0 and η identification at PHENIX

[arXiv:2303.07190] (Submitted to PRD)

- Time-of-flight: |TOF| < 5 ns
- Photon energy: $E_v > 0.5$ GeV
- Charged track veto
- Trigger photon is paired with another measured in the same spectrometer arm
- Energy asymmetry: $\alpha = |E_1 E_2|/(E_1 + E_2) < 0.8$
- Signal regions (blue regions)
 - $\circ \qquad \pi^0:\pm 25~\text{MeV/c}^2\,\text{from mass peak}$
 - $\circ \qquad \eta:\pm 70~\text{MeV/c}^2~\text{from mass peak}$
- Background regions (red regions)
 - $\circ \qquad \pi^0\!\!:\; 47\text{-}97 \, \cup \, 177\text{-}227 \, \text{MeV/c}^2$
 - $\circ ~~\eta{:}~300{\text{-}}400~U~700{\text{-}}800~\text{MeV/}c^2$
- Background fit (green lines)
 - 3rd order polynomial, used to quantify the background fraction
- All Panels: 4 < p_T [GeV/c] < 5; West
 Spectrometer Arm

DIS 2023 - 03/30/2023 - Dillon Fitzgerald (for the PHENIX collaboration)

Analysis Procedure

TSSA Observable

 A_{N} is calculated using the Relative Luminosity formula, integrating over the ϕ ranges of the east and west arms

 $A_{N} = \frac{1}{P \langle cos(\phi) \rangle} \frac{N^{\uparrow} - \mathcal{R}N^{\downarrow}}{N^{\uparrow} + \mathcal{R}N^{\downarrow}} \qquad \qquad \mathcal{R} = \mathcal{L}^{\uparrow}/\mathcal{L}^{\downarrow}$ (relative luminosity)

Background Correction

Once A_N is calculated, it must be corrected for background as follows

 $A_N^{\rm sig} = \frac{A_N - r \cdot A_N^{\rm BG}}{1}$

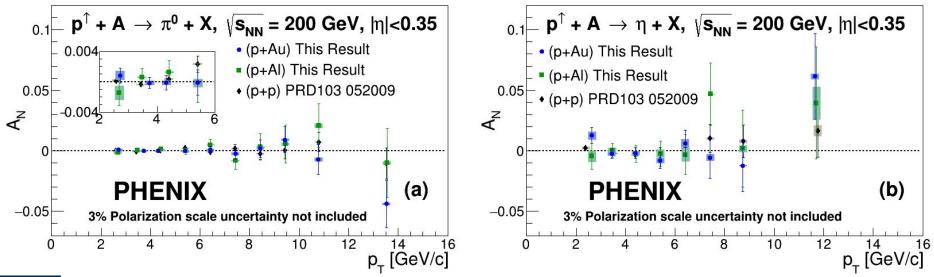
 A_{N} : calculated in (blue) signal regions in the M_{N} spectrum

 $A_{N}^{\ BG}$: calculated in (red) side-band regions in the $M_{_{VV}}$ spectrum

r : calculated from (green lines) third order polynomial fit to M_{vv} spectrum

Cross checks and systematic studies

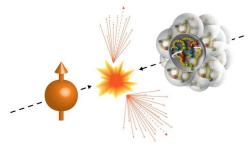
- Geometric mean formula (Square Root formula) $|A_N^{sqrt} - A_N^{Lumi}|$ taken as systematic
- 3ϕ bins per arm
- cosp modulation fit $A_N \cdot \cos \phi_s = \frac{1}{P} \frac{N^{\uparrow}(\phi_s) R \cdot N^{\downarrow}(\phi_s)}{N^{\uparrow}(\phi_s) + R \cdot N^{\downarrow}(\phi_s)}$
- Bunch shuffling
 - Randomize polarization direction, measure A_N / σ_{AN} to 0 determine if deviations of A_{N} from 0 are consistent with statistical uncertainty
- Propagation of systematics on background fractions through background correction formula
 - Adjust fit range of third order polynomial to obtain 0 uncertainty on r

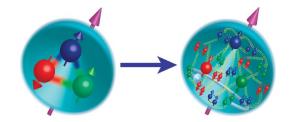

Midrapidity π^0 and η Transverse Single-Spin Asymmetry

[arXiv:2303.07190] (Submitted to PRD)

Consistent with p+p measurement (PRD103 052009 (2021)) and zero across the entire p_T range for both meson species and collision systems

• No nuclear modification of the TSSAs is observed




Summary

- Transverse single spin asymmetries of π⁰ and η mesons provide access to nonperturbative parton-hadron spin-momentum correlations within the proton and hadronization process
- TSSA measurements in p+A collisions provide an interesting opportunity to study transverse spin effects in the presence of a more complex nuclear environment
- First measurement of midrapidity π⁰ and η meson A_N in p+A collisions
 [arXiv:2303.07190] (Submitted to PRD)
 - \circ $~~p^+$ Au and p^+ Al, $\sqrt{s}_{_{\rm NN}}$ = 200 GeV, $|\eta|$ < 0.35
 - Consistent with 2015 $p^+ + p$ measurements and zero
 - No evidence of modification from the more complex nuclear environment in p+A collisions
- Other results in preparation
 - Forward heavy flavor muon $A_N (p^+ + p)$

