Unraveling anomalies in Deep Virtual Compton Scattering

Shohini Bhattacharya

RIKEN BNL/BNL 28 March 2023

In Collaboration with:

Yoshitaka Hatta (BNL) Werner Vogelsang (Tubingen U.)

Based on: <u>arXiv:2210.13419</u>

East Lansing, MI

Recap on chiral anomaly in QCD:

- Lagrangian invariant under global chiral rotation $\psi
 ightarrow e^{ilpha\gamma_5}\psi$
- Axial-vector current: $J_5^{\mu} = \sum_f \bar{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$
- But measure of the path integral is not invariant, which breaks the conservation of the axial current

K. Fujikawa, PRL 1979

Chiral anomaly

Anomaly equation:

$$\partial_{\mu}J_{5}^{\mu} = -\frac{n_{f}\alpha_{s}}{4\pi}F^{\mu\nu}\tilde{F}_{\mu\nu} \qquad \tilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$$

A fundamental property of axial-vector current is the anomaly equation

Chiral anomaly

Anomaly equation:

$$\partial_{\mu}J_{5}^{\mu} = -\frac{n_{f}\alpha_{s}}{4\pi}F^{\mu\nu}\tilde{F}_{\mu\nu} \qquad \tilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$$

A fundamental property of axial-vector current is the anomaly equation

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $(l = p_2 - p_1)$:

$$\langle p_2 | J_5^{\mu} | p_1 \rangle = \frac{n_f \alpha_s}{4\pi} \underbrace{\frac{i l^{\mu}}{l^2}} p_2 | F_a^{\alpha\beta} \tilde{F}_{\alpha\beta}^a | p_1 \rangle$$

Triangle diagram is dominated by infra-red pole

First calculation of box diagram with $l^2 \neq 0$:

Ancmaly aquation

The role of the chiral anomaly in polarized deeply inelastic scattering I: Finding the triangle graph inside the box diagram in Bjorken and Regge asymptotics

Andrey Tarasov^{1,2} and Raju Venugopalan³

A fundamental pro

The role of the chiral anomaly in polarized deeply inelastic scattering II: Topological screening and transitions from emergent axion-like dynamics

Andrey Tarasov 1,2 and Raju Venugopalan 3

Andrey & Raju demonstrated within world-line formalism that to capture the physics of anomaly we need to calculate everything in off-forward kinematics for polarized DIS

Box diagram

Calculation in off-forward kinematics $(l = p_2 - p_1)$:

$$\langle p_2 | J_5^{\mu} | p_1 \rangle = \frac{n_f \alpha_s}{4\pi} \frac{i l^{\mu}}{l^2} p_2 | F_a^{\alpha\beta} \tilde{F}_{\alpha\beta}^a | p_1 \rangle$$

Triangle diagram is dominated by infra-red pole

Ø

First calculation of box diagram with $l^2 \neq 0$:

The role of the chiral anomaly in polarized deeply inelastic scattering I: Finding the triangle graph inside the box diagram in Bjorken and Regge asymptotics

Andrey Tarasov^{1,2} and Raju Venugopalan³

A fundamental pro The role of the chiral anomaly in polarized deeply inelastic scattering II: Topological screening and transitions from emergent axion-like dynamics

Andrey Tarasov 1,2 and Raju Venugopalan 3

Andrey & Raju demonstrated within world-line formalism that to capture the physics of anomaly we need to calculate everything in off-forward kinematics for polarized DIS

arXiv: 2210.13419 (2022)

Chiral and trace anomalies in Deeply Virtual Compton Scattering

Shohini Bhattacharya,
1,* Yoshitaka Hatta,
1,2,† and Werner Vogelsang
3,‡

 p_1

Box diagram

 $(l = p_2 - p_1)$:

Calculation of imaginary part of anti-symmetric/symmetric (μ, ν) of Compton amplitude with non-zero t

Antisymmetric part of Compton amplitude $(\xi = 0)$

Recap on trace anomaly in QCD:

• A quantum anomaly in the trace of its energy momentum tensor (conformal anomaly) breaks conformal invariance

Trace anomaly:

$$\Theta^{\mu}_{\mu} = \frac{\beta(g)}{2g} F^{\mu\nu} F_{\mu\nu}$$

 $\Theta^{\mu\nu}$: Energy Momentum Tensor (EMT)

Recap on trace anomaly in QCD:

• A quantum anomaly in the trace of its energy momentum tensor (conformal anomaly) breaks conformal invariance

Trace anomaly:

$$\Theta^{\mu}_{\mu} = \frac{\beta(g)}{2g} F^{\mu\nu} F_{\mu\nu}$$

 $\Theta^{\mu\nu}$: Energy Momentum Tensor (EMT)

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $(l = p_2 - p_1)$:

$$\langle p_2 | \Theta_{\text{QED}}^{\mu\nu} | p_1 \rangle = -\frac{e^2}{24\pi \ell^2} \left(p^\mu p^\nu + \frac{l^\mu l^\nu - l^2 g^{\mu\nu}}{4} \right) \langle p_2 | F^{\alpha\beta} F_{\alpha\beta} | p_1 \rangle$$

Triangle diagram is dominated by infra-red pole

Trace anomaly

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $(l = p_2 - p_1)$:

$$\langle p_2 | \Theta_{\text{QED}}^{\mu\nu} | p_1 \rangle = -\frac{e^2}{24\pi l^2} \left(p^\mu p^\nu + \frac{l^\mu l^\nu - l^2 g^{\mu\nu}}{4} \right) \langle p_2 | F^{\alpha\beta} F_{\alpha\beta} | p_1 \rangle$$

Triangle diagram is dominated by infra-red pole

Trace anomaly

Summary

 Revisited QCD factorization for Compton scattering: Crucial topic for ongoing & future experiments including at EIC

• Importance to understand off-forward poles originating from chiral & trace anomalies

$$T^{\mu\nu} \sim rac{\langle \boldsymbol{F}\tilde{\boldsymbol{F}}
angle}{l^2}, \quad rac{\langle \boldsymbol{F}\boldsymbol{F}
angle}{l^2}$$

Unnoticed in literature, possible violation of factorization

Profound physical implications of these poles

Perturbative calculations suggest that massless poles are induced in GPDs $\, ilde{E}, \, H, \, E \,$

Povisited OCD factorization for Compton coattoring: Crucial tonic for ongoing 8.

However, we know there are no massless poles in axial and gravitational form factors (moments of GPDs)

Importance to understand off-forward poles originating from chiral & trace anomalies

$$T^{\mu
u} \sim rac{\langle m{F}m{ ilde{F}}
angle}{l^2}, \quad rac{\langle m{F}m{F}
angle}{l^2}$$

Unnoticed in literature, possible violation of factorization

Profound physical implications of these poles

Summary

Perturbative calculations suggest that massless poles are induced in GPDs $\, E, \, H, \, E \,$

Povisited OCD factorization for Compton scattering: Crucial tonic for organing &

However, we know there are no massless poles in axial and gravitational form factors (moments of GPDs)

We proposed a possible scenario of pole cancellation

This has to do with eta-meson & glueball mass generations

importance to understand on-rorward poles originating from chiral & trace anomalies

Summary & outlook

Novel connections between DVCS & chiral/trace anomalies: This could be a new & potentially rich avenue for GPD research

rucial topic for ongoing &

future experiments including at EIC

Explore quark-channel diagrams in DVCS: (SB, Hatta, Vogelsang, In preparation)

Unnoticed in literature, possible violation of factor

Imprint of anomaly on other physical processes: les

(Example: Deeply-virtual meson production)

Backup slides

