Unraveling anomalies in
 Deep Virtual Compton Scattering

Shohini Bhattacharya
RIKEN BNL/BNL
28 March 2023

In Collaboration with:
Yoshitaka Hatta (BNL)
Werner Vogelsang (Tubingen U.)

Based on: arXiv:2210.13419

East Lansing, MI

Chiral anomaly

Recap on chiral anomaly in QCD:

- Lagrangian invariant under global chiral rotation $\psi \rightarrow e^{i \alpha \gamma_{5}} \psi$
- Axial-vector current: $J_{5}^{\mu}=\sum_{f} \bar{\psi}_{f} \gamma^{\mu} \gamma_{5} \psi_{f}$
- But measure of the path integral is not invariant, which breaks the conservation of the axial current
K. Fujikawa, PRL 1979

Chiral anomaly

Anomaly equation:

$$
\partial_{\mu} J_{5}^{\mu}=-\frac{n_{f} \alpha_{s}}{4 \pi} F^{\mu \nu} \tilde{F}_{\mu \nu} \quad \tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

A fundamental property of axial-vector current is the anomaly equation

Adler - Bell - Jackiw chiral anomaly

Famous example: ABJ anomaly contribution to $\pi^{0} \rightarrow 2 \gamma$

Chiral anomaly

Anomaly equation:

$$
\partial_{\mu} J_{5}^{\mu}=-\frac{n_{f} \alpha_{s}}{4 \pi} F^{\mu \nu} \tilde{F}_{\mu \nu} \quad \tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

A fundamental property of axial-vector current is the anomaly equation

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:
$\left\langle p_{2}\right| J_{5}^{\mu}\left|p_{1}\right\rangle=\frac{n_{f} \alpha_{\alpha}}{4 \pi} \frac{\overparen{i l^{\mu}}}{l^{2}}\left\langle p_{2}\right| F_{a}^{\alpha \beta} \tilde{F}_{\alpha \beta}^{a}\left|p_{1}\right\rangle$
Triangle diagram is dominated by infra-red pole

Imprint of Anomalies in QCD Compton scattering

QCD Compton Scattering

In QCD Compton scattering, box diagrams appear in perturbation theory at one-loop

to anomaly equatio

Triangle diagram is dominated by infra-red pole

Imprint of Anomalies in QCD Compton scattering

QCD Compton Scattering

In QCD Compton scattering, box diagrams appear in perturbation theory at one-loop

Box diagram can be viewed as a non-local generalization of triangle diagram

If triangle is dominated by anomaly pole, trace of that should be visible in box diagram

Imprint of Anomalies in QCD Compton scattering

First calculation of box diagram with $l^{2} \neq 0$:

The role of the chiral anomaly in polarized deeply inelastic scattering I: Finding the triangle graph inside the box diagram in Bjorken and Regge asymptotics

Andrey Tarasov ${ }^{1,2}$ and Raju Venugopalan ${ }^{3}$
The role of the chiral anomaly in polarized deeply inelastic scattering II:
A fundamental prop Topological screening and transitions from emergent axion-like dynamics

Andrey Tarasov ${ }^{1,2}$ and Raju Venugopalan ${ }^{3}$
Andrey \& Raju demonstrated within world-line formalism that to capture the physics of anomaly we need to calculate everything in off-forward kinematics for polarized DIS

Box diagram

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:
$\left\langle p_{2}\right| J_{5}^{\mu}\left|p_{1}\right\rangle=\frac{n_{f} \alpha_{\alpha}}{4 \pi} \xlongequal[\overbrace{}^{\mu} l^{\mu}]{l^{2}}\left\langle p_{2}\right| F_{a}^{\alpha \beta} \tilde{F}_{\alpha \beta}^{a}\left|p_{1}\right\rangle$
Triangle diagram is dominated by infra-red pole

Imprint of Anomalies in QCD Compton scattering

First calculation of box diagram with $l^{2} \neq 0$:

Imprint of Anomalies in QCD Compton scattering

Kinematics:

Calculation of imaginary part of anti-symmetric/symmetric (μ, ν) of Compton amplitude with non-zero t

Imprint of Anomalies in QCD Compton scattering

Kinematics:

Usual rationale is that keeping $t=l^{2} \neq 0$ produces higher twist corrections $\sim \frac{t}{Q^{2}}$

\[

\]

Calculation of imaginary part of anti-symmetric/symmetric (μ, ν) of Compton amplitude with non-zero t

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Recall: In DR, one obtains

$$
\begin{aligned}
& \Delta P_{q g} \frac{-1}{\epsilon}+\delta C_{g}^{\overline{\mathrm{MS}}} \\
& \delta C_{g}^{\overline{\mathrm{MS}}}(\hat{x})=2 T_{R}(2 \hat{x}-1)\left(\ln \frac{1-\hat{x}}{\hat{x}}-1\right)+4 T_{R}(1-\hat{x})
\end{aligned}
$$

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Antisymmetric part of Compton amplitude

The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)
$-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \operatorname{Im} T_{\mu \nu}^{\text {asym }}=\frac{1}{2} \sum_{f} e_{f}^{2} \tilde{u}\left(P_{2}\right)\left[\gamma^{\alpha} \gamma_{5}\left(\tilde{H}_{f}\left(x_{B}, \xi, l^{2}\right)+\tilde{H}_{f}\left(-x_{B}, \xi, l^{2}\right)\right)+\frac{l^{\alpha} \gamma_{5}}{2 M}\left(\tilde{E}_{f}^{\text {bare }}\left(x_{B}, \xi, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, \xi, l^{2}\right)\right)\right] u\left(P_{1}\right)$

$\mathcal{O}\left(1 / Q^{2}\right)$
(Non-local) chiral anomaly manifests itself in high energy scattering amplitude possibly breaks QCD factorization

Imprint of Anomalies in QCD Compton scattering

Antisymmetric part of Compton amplitude

$$
\left.-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \operatorname{Im} T_{\mu \nu}^{\text {asym }} \approx \frac{1}{2} \frac{\alpha_{s}}{2 \pi}\left(\sum_{f} e_{f}^{2}\right) \bar{u}\left(P_{2}\right)\left[\left(\Delta P_{q g} \ln \frac{Q^{2}}{-l^{2}}+\delta C_{g}^{\text {off }}\right) \otimes \Delta G\left(x_{B}\right) \gamma^{\alpha} \gamma_{5}-\frac{l^{\alpha}}{l^{2}}\right) C_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}\right) \gamma_{5}\right] u\left(P_{1}\right)
$$

Anomalous contribution to GPD \tilde{E} at one loop

The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

(Non-local) chiral anomaly manifests itself in high energy scattering amplitude possibly breaks QCD factorization

Imprint of Anomalies in QCD Compton scattering

Perturbative calculations suggest that massless poles are induced in GPD \tilde{E}

4 However, we know there are no massless poles in axial form factor (moment of GPD \tilde{E})

The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

$$
g_{P}\left(l^{2}\right)=\int d x \tilde{E}(x) \sim \frac{1}{l^{2}} \text { des contm ution to GPD } \tilde{E} \text { at one loop }
$$

$-\epsilon^{\alpha}$ Deeply tied to the UA(1) problem: Why is the η^{\prime} so massive ($957 \mathrm{MeV}!$)?

Imprint of Anomalies in QCD Compton scattering

Antisymme
 An attempt to rescue factorization

Redefine

$$
\begin{array}{cc}
\tilde{E}_{f}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}\left(-x_{B}, l^{2}\right) \\
& \overbrace{\text { "Bare GPD" (tree level) }}^{\tilde{E}_{f}^{\text {bare }}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, l^{2}\right)}+\frac{\alpha_{s}}{2 \pi} \frac{2 M}{l^{2}} \delta C_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}, l^{2}\right) \\
\text { Perturbative pole (one loop) }
\end{array}
$$

Postulate that the perturbative pole cancels the pre-existing pole in "bare" GPD:

$$
\tilde{E}_{f}^{\text {bare }}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, l^{2}\right) \approx-\frac{\alpha_{s}}{2 \pi} \frac{2 M}{l^{2}} \delta C_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}, l^{2}=0\right)
$$

Postulate that the "renormalized" GPD integrates to $g_{P}\left(l^{2}\right)$:

$$
g_{P}\left(l^{2}\right)=\sum_{f} \int_{-1}^{1} d x \tilde{E}_{f}\left(x, \xi, l^{2}\right)=\sum_{f} \int_{0}^{1} d x\left(\tilde{E}_{f}\left(x, \xi, l^{2}\right)+\tilde{E}_{f}\left(-x, \xi, l^{2}\right)\right)
$$

Imprint of Anomalies in QCD Compton scattering

An attempt to rescue factorization
 Antisymme

Redefine

$$
\begin{array}{|c|}
\tilde{E}_{f}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}\left(-x_{B}, l^{2}\right) \\
\\
\text { "Bare GPD" (tree level) } \\
\tilde{E}_{f}^{\text {bare }}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, l^{2}\right)
\end{array}+\frac{\alpha_{s}}{2 \pi} \frac{2 M}{l^{2}} \delta C_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}, l^{2}\right)
$$

The QCD

$$
\text { Pole cancellation at } \int d x \quad \text { We find: } \quad \frac{g_{P}\left(l^{2}\right)}{2 M}=-\frac{i}{l^{2}}\left(\left.\frac{\left\langle P_{2}\right| \frac{n_{f} \alpha_{s}}{4 \pi} F \tilde{F}\left|P_{1}\right\rangle}{\bar{u}\left(P_{2}\right) \gamma_{5} u\left(P_{1}\right)}\right|_{l^{2}=0}-\frac{\left\langle P_{2}\right| \frac{n_{f} \alpha_{s}}{4 \pi} F \tilde{F}\left|P_{1}\right\rangle}{\bar{u}\left(P_{2}\right) \gamma_{5} u\left(P_{1}\right)}\right) \sim \frac{1}{l^{2}-m_{\eta^{\prime}}^{2}}
$$

"We demonstrate that the dynamical interplay between the physics of the anomaly, and that of the isosinglet pseudoscalar $U_{A}(1)$ sector of QCD resolves both problems simultaneously: the lifting of the $\bar{\eta}$ pole by topological mass generation of the η^{\prime} and the cancellation of the anomaly pole"

- Tarasov, Venugopalan

Imprint of Anomalies in QCD Compton scattering

```
An attempt to rescue factorization
```

Redefine

$$
\tilde{E}_{f}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}\left(-x_{B}, l^{2}\right)=\tilde{E}_{f}^{\text {bare }}\left(x_{B}, l^{2}\right)+\tilde{E}_{f}^{\text {bare }}\left(-x_{B}, l^{2}\right)+\frac{\alpha_{s}}{2 \pi} \frac{2 M}{l^{2}} \delta C_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}, l^{2}\right)
$$

It is highly non-trivial if a similar cancellation happens at the GPD (x-unintegrated) level which is what we need to justify factorization
Pole cancellation at $\int d x \quad$ We find: $\frac{g_{P}\left(l^{2}\right)}{2 M}=-\frac{i}{l^{2}}\left(\left.\frac{\left\langle\left. P_{2} \frac{n_{f} \alpha_{2}}{4 \pi} F F \right\rvert\, P_{1}\right\rangle}{\bar{u}\left(P_{2}\right) \gamma_{5} u\left(P_{1}\right)}\right|_{l^{2}=0}-\frac{\left.\left\langle\left. P_{2} \frac{n^{2} \alpha_{s}}{4 \pi} F F \right\rvert\, P_{1}\right\rangle\right)}{\bar{u}\left(P_{2}\right) \gamma_{5} u\left(P_{1}\right)}\right) \sim \frac{1}{l^{2}-m_{\eta^{\prime}}^{2}}$
"We demonstrate that the dynamical interplay between the physics of the anomaly, and that of the isosinglet pseudoscalar $U_{A}(1)$ sector of QCD resolves both problems simultaneously: the lifting of the $\bar{\eta}$ pole by topological mass generation of the η^{\prime} and the cancellation of the
anomaly pole"

- Tarasov, Venugopalan

Trace anomaly

Recap on trace anomaly in QCD:

- A quantum anomaly in the trace of its energy momentum tensor (conformal anomaly) breaks conformal invariance

Trace anomaly:

$$
\Theta_{\mu}^{\mu}=\frac{\beta(g)}{2 g} F^{\mu \nu} F_{\mu \nu}
$$

$\Theta^{\mu \nu}$: Energy Momentum Tensor (EMT)

Trace anomaly

Recap on trace anomaly in QCD:

- A quantum anomaly in the trace of its energy momentum tensor (conformal anomaly) breaks conformal invariance

Trace anomaly:

$$
\Theta_{\mu}^{\mu}=\frac{\beta(g)}{2 g} F^{\mu \nu} F_{\mu \nu}
$$

$\Theta^{\mu \nu}$: Energy Momentum Tensor (EMT)

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:
$\left\langle p_{2}\right| \Theta_{\mathrm{QED}}^{\mu \nu}\left|p_{1}\right\rangle=-\frac{e^{2}}{24 \pi \widehat{l} l^{2}}\left(p^{\mu} p^{\nu}+\frac{l^{\mu} l^{\nu}-l^{2} g^{\mu \nu}}{4}\right)\left\langle p_{2}\right| F^{\alpha \beta} F_{\alpha \beta}\left|p_{1}\right\rangle$
Triangle diagram is dominated by infra-red pole

Trace anomaly

Rel Gravitational Form Factors:

$$
\left\langle P_{2}\right| \Theta_{f}^{\mu \nu}\left|P_{1}\right\rangle=\frac{1}{M} \bar{u}\left(P_{2}\right)\left[P^{\mu} P^{\nu} A_{f}+\left(A_{f}+B_{f}\right) \frac{\left.P^{(\mu} i \sigma^{\nu}\right) \rho}{2} l_{\rho}+\frac{D_{f}}{4}\left(l^{\mu} l^{\nu}-g^{\mu \nu} l^{2}\right)+M^{2} \bar{C}_{f} g^{\mu \nu}\right] u\left(P_{1}\right)
$$

Massless poles in Gravitational Form Factors?

$$
A_{f}\left(l^{2}\right), B_{f}\left(l^{2}\right), D_{f}\left(l^{2}\right) \sim \frac{1}{l^{2}}
$$

A perturbative solution to anomaly equation:

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:
$\left\langle p_{2}\right| \Theta_{\mathrm{QED}}^{\mu \nu}\left|p_{1}\right\rangle=-\frac{e^{2}}{24 \pi \widehat{l^{2}}}\left(p^{\mu} p^{\nu}+\frac{l^{\mu} l^{\nu}-l^{2} g^{\mu \nu}}{4}\right)\left\langle p_{2}\right| F^{\alpha \beta} F_{\alpha \beta}\left|p_{1}\right\rangle$
Triangle diagram is dominated by infra-red pole

Trace anomaly

Rel Gravitational Form Factors:

$$
\left\langle P_{2}\right| \Theta_{f}^{\mu \nu}\left|P_{1}\right\rangle=\frac{1}{M} \bar{u}\left(P_{2}\right)\left[P^{\mu} P^{\nu} A_{f}+\left(A_{f}+B_{f}\right) \frac{P^{(\mu} i \sigma^{\nu) \rho} l_{\rho}}{2}+\frac{D_{f}}{4}\left(l^{\mu} l^{\nu}-g^{\mu \nu} l^{2}\right)+M^{2} \bar{C}_{f} g^{\mu \nu}\right] u\left(P_{1}\right)
$$

Massless poles in Gravitational Form Factors?

$$
A_{f}\left(l^{2}\right), B_{f}\left(l^{2}\right), D_{f}\left(l^{2}\right) \sim \frac{1}{2} \quad \text { In QCD, we expect: } \quad \frac{1}{l^{2}} \rightarrow \frac{1}{l^{2}-m_{G}^{2}}
$$

Calculation in off-forward kinematics $\left(l=p_{2}-p_{1}\right)$:

Triangle diagram is dominated by infra-red pole

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Symmetric part of Compton amplitude $(\xi \neq 0)$

```
Pole! (New result)
```

$$
\begin{aligned}
&\left(H_{f}\left(x_{B}, \xi, l^{2}\right)-H_{f}\left(-x_{B}, \xi, l^{2}\right)\right)=\left(H_{f}^{\text {bare }}\left(x_{B}, \xi, l^{2}\right)-H_{f}^{\text {bare }}\left(-x_{B}, \xi, l^{2}\right)\right) \\
&+\frac{\alpha_{s}}{2 \pi} \frac{1}{l^{2}} C^{\text {anom }} \otimes^{\prime} \mathcal{F}\left(x_{B}, \xi, l^{2}\right)
\end{aligned}
$$

$$
\left(E_{f}\left(x_{B}, \xi, l^{2}\right)-E_{f}\left(-x_{B}, \xi, l^{2}\right)\right)=\left(E_{f}^{\text {bare }}\left(x_{B}, \xi, l^{2}\right)-E_{f}^{\text {bare }}\left(-x_{B}, \xi, l^{2}\right)\right)
$$

$$
\begin{array}{cc}
\uparrow & -\frac{\alpha_{s}}{2 \pi} \frac{1}{l^{2}} C^{\text {anom }} \otimes^{\prime} \mathcal{F}\left(x_{B}, \xi, l^{2}\right) \\
\text { "Bare GPD" (tree level) } & \uparrow
\end{array}
$$

Perturbative pole (one loop)

Imprint of Anomalies in QCD Compton scattering

Symmetric part of Compton amplitude $(\xi \neq 0)$

Pole! (New result)

$$
\begin{aligned}
&\left(H_{f}\left(x_{B}, \xi, l^{2}\right)-H_{f}\left(-x_{B}, \xi, l^{2}\right)\right)=\left(H_{f}^{\text {bare }}\left(x_{B}, \xi, l^{2}\right)-H_{f}^{\text {bare }}\left(-x_{B}, \xi, l^{2}\right)\right) \\
&+\frac{\alpha_{s}}{2 \pi} \frac{1}{l^{2}} C^{\text {anom }} \otimes^{\prime} \mathcal{F}\left(x_{B}, \xi, l^{2}\right)
\end{aligned}
$$

$$
\left(E_{f}\left(x_{B}, \xi, l^{2}\right)-E_{f}\left(-x_{B}, \xi, l^{2}\right)\right)=\left(E_{f}^{\text {bare }}\left(x_{B}, \xi, l^{2}\right)-E_{f}^{\text {bare }}\left(-x_{B}, \xi, l^{2}\right)\right)
$$

Twist-4 GPD:

$$
\mathcal{F}\left(x, \xi, l^{2}\right)=-4 x P^{+} M \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z}
$$

(Non-local) trace anomaly manifests itself in high energy scattering amplitude \& possibly breaks QCD factorization

Imprint of Anomalies in QCD Compton scattering

Symmetric part of Compton amplitude $(\xi \neq 0)$

We proposed a possible scenario of pole cancellation in an attempt to rescue QCD factorization

(Non-local) trace anomaly manifests itself in high energy scattering amplitude \& possibly breaks QCD factorization

Summary

- Revisited QCD factorization for Compton scattering: Crucial topic for ongoing \& future experiments including at EIC
- Importance to understand off-forward poles originating from chiral \& trace anomalies

$$
T^{\mu \nu} \sim \frac{\langle\boldsymbol{F} \tilde{\boldsymbol{F}}\rangle}{l^{2}}, \quad \frac{\langle\boldsymbol{F} \boldsymbol{F}\rangle}{l^{2}}
$$

Unnoticed in literature, possible violation of factorization
Profound physical implications of these poles

Summary

Perturbative calculations suggest that massless poles are induced in GPDs \tilde{E}, H, E

However, we know there are no massless poles in axial and gravitational form factors (moments of GPDs)

- Importance to understand off-forward poles originating from chiral \& trace anomalies

$$
T^{\mu \nu} \sim \frac{\langle\boldsymbol{F} \tilde{\boldsymbol{F}}\rangle}{l^{2}}, \quad \frac{\langle\boldsymbol{F} \boldsymbol{F}\rangle}{l^{2}}
$$

Unnoticed in literature, possible violation of factorization
Profound physical implications of these poles

Summary

Perturbative calculations suggest that massless poles are induced in GPDs \tilde{E}, H, E

However, we know there are no massless poles in axial and gravitational form factors (moments of GPDs)
We proposed a possible scenario of pole cancellation
This has to do with eta-meson \& glueball mass generations

- importance to unuerstamu uif-rurwaru poies originating from chiral \& trace anomalies
cf, the η^{\prime} mass problem

se poles

$A\left(l^{2}\right), B\left(l^{2}\right), D\left(l^{2}\right) \sim \frac{1}{l^{2}-m_{G}^{2}}$

Summary \& outlook

Novel connections between DVCS \& chiral/trace anomalies:
This could be a new \& potentially rich avenue for GPD research
future experiments including at EIC

Explore quark-channel diagrams in DVCS: (SB, Hatta, Vogelsang, In preparation)

- Import

Calculate real part of Compton amplitude
Unnoticed in literature, possible violation of factor
Imprint of anomaly on other physical processes: les
(Example: Deeply-virtual meson production)

Backup slides

Imprint of Anomalies in QCD Compton scattering

FIG. 1: Box diagrams for the Compton amplitude in off-forward kinematics.

Imprint of Anomalies in QCD Compton scattering

Pole was unnoticed in the GPD literature because one typically assumes

$$
l^{\mu}=-2 \xi p^{\mu} \rightarrow t=l^{2}=0
$$

before loop integration
Usual rationale: Corrections supposedly higher twist $\frac{t}{Q^{2}}$

Ine QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

Ji, Osborne; Belitsky, Muller; Mankiewicz et al, Pire et al.
$-\epsilon^{\alpha \beta \mu \nu} P_{\beta} \operatorname{Im} T_{\mu \nu}^{\text {asym }}$

$\alpha^{\alpha} \gamma_{5}\left(\tilde{H}_{f}\left(x_{B}, \xi, l^{2}\right)\right.$
However, box diagram is power-divergent in the IR!

$$
\begin{aligned}
\frac{l^{\alpha}}{l^{2}} \delta C_{g}^{\text {anom }} \otimes \tilde{\mathcal{F}}\left(x_{B}\right) \gamma_{5} \xrightarrow{\text { Chiral }}\left\langle p_{2}\right| F^{\mu \nu} \tilde{F}_{\mu \nu}\left|p_{1}\right\rangle & \propto \epsilon^{\mu \nu \alpha \beta} l_{\mu} p_{\nu} \epsilon_{1 \alpha} \epsilon_{2 \beta}^{*} \\
& \rightarrow 0 \quad \text { when } \quad l^{\mu} \propto p^{\mu}
\end{aligned}
$$

Imprint of Anomalies in QCD Compton scattering

An attempt to rescue factorization

Form Factors (FF) of axial-vector operator:

$$
\left\langle P_{2}\right| J_{5}^{\mu}\left|P_{1}\right\rangle=\bar{u}\left(P_{2}\right)\left[\gamma^{\mu} \gamma_{5} g_{A}\left(l^{2}\right)+\frac{l^{\mu} \gamma_{5}}{2 M} g_{P}\left(l^{2}\right)\right] u\left(P_{1}\right)
$$

Postulate that the perturbative pole cancels the pre-existing pole in "bare" GPD:

Postulate that the "renormalized" GPD integrates to $g_{P}\left(l^{2}\right)$:

$$
g_{P}\left(l^{2}\right)=\sum_{f} \int_{-1}^{1} d x \tilde{E}_{f}\left(x, \xi, l^{2}\right)=\sum_{f} \int_{0}^{1} d x\left(\tilde{E}_{f}\left(x, \xi, l^{2}\right)+\tilde{E}_{f}\left(-x, \xi, l^{2}\right)\right)
$$

Imprint of Anomalies in QCD Compton scattering

Imprint of Anomalies in QCD Compton scattering

Symmetric case:

Examplar Anticummotrin nart of Comntan amnlitunla

$$
\begin{align*}
& \bar{F}_{1}^{\mathrm{off}}\left(x_{B}, l\right) \approx \frac{1}{2} \frac{\alpha_{s}}{2 \pi}\left(\sum_{f} e_{f}^{2}\right)\left[\left(P_{q g} \ln \frac{Q^{2}}{-l^{2}}+C_{1 g}^{\mathrm{off}}\right) \otimes g\left(x_{B}\right)+\frac{1}{l^{2}} C^{\mathrm{anom}} \otimes^{\prime} \mathcal{F}\left(x_{B}, \xi, l^{2}\right) \frac{\bar{u}\left(P_{2}\right) u\left(P_{1}\right)}{2 M}\right], \\
& \bar{F}_{2}^{\mathrm{off}}\left(x_{B}, l\right) \approx x_{B} \frac{\alpha_{s}}{2 \pi}\left(\sum_{f} e_{f}^{2}\right)\left[\left(P_{q g} \ln \frac{Q^{2}}{-l^{2}}+C_{2 g}^{\mathrm{off}}\right) \otimes g\left(x_{B}\right)+\frac{1}{l^{2}} C^{\text {anom }} \otimes^{\prime} \mathcal{F}\left(x_{B}, \xi, l^{2}\right) \frac{\bar{u}\left(P_{2}\right) u\left(P_{1}\right)}{2 M}\right] \tag{31}
\end{align*}
$$

Antisymmetric case:
We recognize the expected structure of the one-loop corrections associated with the unpolarized gluon PDF $g(x)$, with the splitting function $P_{q g}(\hat{x})=2 T_{R}\left((1-\hat{x})^{2}+\hat{x}^{2}\right)$. The coefficient functions are given by
$A \otimes B\left(x_{B}\right) \equiv \int_{x_{B}}^{1} \frac{d x}{x} A\left(\frac{x_{B}}{x}\right) B(x)$.

$$
\begin{align*}
& C_{1 g}^{\mathrm{off}}(\hat{x})=2 T_{R}\left((1-\hat{x})^{2}+\hat{x}^{2}\right)\left(\ln \frac{1}{\hat{x}(1-\hat{x})}-1\right), \tag{32}\\
& C_{2 g}^{\mathrm{off}}(\hat{x})=2 T_{R}\left((1-\hat{x})^{2}+\hat{x}^{2}\right)\left(\ln \frac{1}{\hat{x}(1-\hat{x})}-1\right)+8 T_{R} \hat{x}(1-\hat{x}) .
\end{align*}
$$

In addition, we find a pole $1 / l^{2}$ in both $\bar{F}_{1}^{\text {off }}$ and $\bar{F}_{2}^{\text {off }}$ (but not in the difference $\bar{F}_{2}^{\text {off }}-2 x_{B} \bar{F}_{1}^{\text {off }}$ relevant to the longitudinal structure function), with the following convolution formula

$$
\begin{equation*}
C^{\text {anom }} \otimes^{\prime} \mathcal{F}\left(x_{B}, \xi, l^{2}\right) \equiv \int_{x_{B}}^{1} \frac{d x}{x} K(\hat{x}, \hat{\xi}) \mathcal{F}\left(x, \xi, l^{2}\right)-\frac{\theta\left(\xi-x_{B}\right)}{2} \int_{-1}^{1} \frac{d x}{x} L(\hat{x}, \hat{\xi}) \mathcal{F}\left(x, \xi, l^{2}\right) \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
K(\hat{x}, \hat{\xi})=2 T_{R} \frac{\hat{x}(1-\hat{x})}{1-\hat{\xi}^{2}}, \quad L(\hat{x}, \hat{\xi})=2 T_{R} \frac{\hat{x}(\hat{\xi}-\hat{x})}{1-\hat{\xi}^{2}} . \tag{34}
\end{equation*}
$$

Imprint of Anomalies in QCD Compton scattering

Symmetric part of Compton amplitude $(\xi \neq 0)$

Polynomiality:

Pole! (New result)

$$
\begin{aligned}
& \left.\left.\int_{0}^{1} d x_{B} x_{B}\left(H_{f}\left(x_{B}, \xi, l^{2}\right)-H_{f}\left(-x_{B}, \xi, l^{2}\right)\right)=\int_{-1}^{1} d x_{B} x_{B} H_{f}\left(x_{B}, \xi, l^{2}\right)=A_{f}\left(l^{2}\right)+\xi^{2} D_{f}\left(l^{2}\right),-x_{B}, \xi, l^{2}\right)\right) \\
& \int_{0}^{1} d x_{B} x_{B}\left(E_{f}\left(x_{B}, \xi, l^{2}\right)-E_{f}\left(-x_{B}, \xi, l^{2}\right)\right)=\int_{-1}^{1} d x_{B} x_{B} E_{f}\left(x, \xi, l^{2}\right)=B_{f}\left(l^{2}\right)-\xi^{2} D_{f}\left(l^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{f} e_{f}^{2}\left(A_{f}^{\text {bare }}\left(l^{2}\right)+\xi^{2} D_{f}^{\text {bare }}\left(l^{2}\right)\right) \approx \frac{T_{R} \alpha_{s}}{12 \pi l^{2}}\left(\sum_{f} e_{f}^{2}\right)\left(\frac{\langle P| F^{\alpha \beta}(i \overleftrightarrow{D}+)^{2} F_{\alpha \beta}|P\rangle}{\left(P^{+}\right)^{2}}+\xi^{2}\langle P| F^{2}|P\rangle\right), \\
& \sum_{f} e_{f}^{2}\left(B_{f}^{\text {bare }}\left(l^{2}\right)-\xi^{2} D_{f}^{\text {bare }}\left(l^{2}\right)\right) \approx-\frac{T_{R} \alpha_{s}}{12 \pi l^{2}}\left(\sum_{f} e_{f}^{2}\right)\left(\frac{\langle P| F^{\alpha \beta}(i \overleftrightarrow{D}+)^{2} F_{\alpha \beta}|P\rangle}{\left(P^{+}\right)^{2}}+\xi^{2}\langle P| F^{2}|P\rangle\right)
\end{aligned}
$$

