DIS2023: XXX International Workshop on Deep-Inelastic Scattering and Related Subjects

Contribution ID: 164 Type: Parallel talk

Transverse single spin asymmetry for very forward neutron production in polarized p + p collisions at

 $\sqrt{s} = 510 \text{ GeV}$

Tuesday, 28 March 2023 17:10 (20 minutes)

In the high-energy p+p collisions, the transverse single spin asymmetry for very forward neutron production has been interpreted by an interference between π (spin flip) and a_1 (spin non-flip) exchange with a non-zero phase shift. The π and a_1 exchange model predicted the neutron asymmetry would increase in magnitude with transverse momentum $(p_{\rm T})$ in $p_{\rm T} < 0.4~{\rm GeV/}c$. In June 2017, the RHICf experiment installed an electromagnetic calorimeter at the zero-degree area of the STAR experiment at the Relativistic Heavy Ion Collider and measured the neutron asymmetry in a wide $p_{\rm T}$ range of $0 < p_{\rm T} < 1~{\rm GeV/}c$ from polarized p+p collisions at $\sqrt{s} = 510~{\rm GeV}$. The RHICf data allows us to study the kinematic dependence of the neutron asymmetry in detail, which not only can test the π and a_1 exchange model in the wider $p_{\rm T}$ range but also can enrich our understanding for the spin-involved diffractive particle production mechanism. We present the final result of the neutron asymmetry measured by the RHICf experiment. A new theoretical trial to understand the RHICf result based on the Reggeon exchange will also be discussed.

Submitted on behalf of a Collaboration?

Yes

Participate in poster competition?

Primary author: Dr KIM, Minho (RIKEN)

Presenter: Dr KIM, Minho (RIKEN) Session Classification: WG5

Track Classification: WG5: Spin and 3D Structure