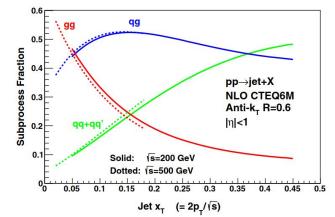
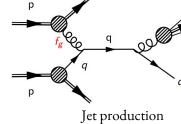
Recent longitudinal spin asymmetry and cross section results at PHENIX

Devon Loomis for the PHENIX Collaboration

Accessing collinear PDFs


Deep inelastic scattering and Drell-Yan

$$d\sigma_{DIS} \propto f_a(x_a) d\sigma^{ab o cd} \qquad d\sigma_{DY} \propto f_a(x_a) f_b(x_b) d\sigma^{ab o cd}$$


- Good constraint on quark distribution functions but contribute to gluon distribution at next to leading order
- p+p collisions

$$d\sigma_{pp} \propto f_a(x_a)f_b(x_b)d\sigma^{ab\to cX}D_c^h(z_c)$$

- Access gluon pdf at leading order
- Inclusive jet and direct photon cross sections
 - small final state fragmentation effects

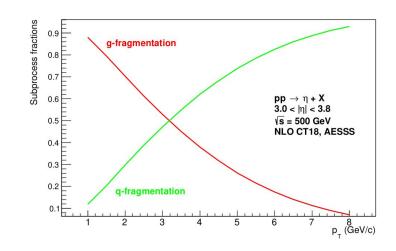
STAR collaboration. Phys. Rev. D 100, 052005 (2019)

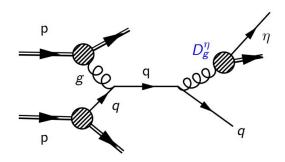
 f_g q

Direct photon production

 $f_a(x_a)$ Parton distribution function of parton a with momentum fraction x_a $D_c^h(z_c)$ Fragmentation function of parton c into hadron h with momentum fraction z_c

Accessing collinear FFs

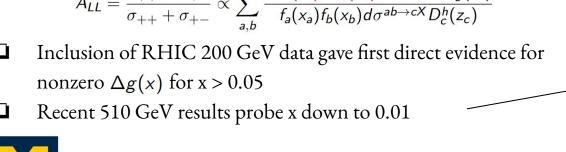

e+e- collisions


$$d\sigma_{ee} \propto d\sigma^{ab o cX} D_c^h(z_c)$$

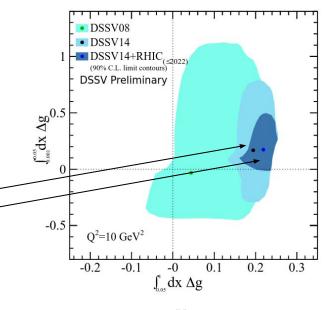
- Clean measurements for the quark fragmentation functions
- No leading order access to gluon fragmentation
- p+p collisions

$$d\sigma_{pp} \propto f_a(x_a)f_b(x_b)d\sigma^{ab\to cX}D_c^h(z_c)$$

Access gluon and flavor-separated quark fragmentation with inclusive hadronic cross sections from RHIC

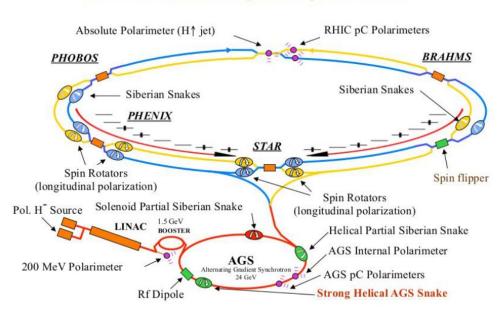


Gluon helicity distributions


$$\frac{1}{2} = \frac{1}{2} \sum_{q} \Delta q + \Delta g + L_q + L_g$$
 proton spin quark helicity gluon orbital motion quark and gluon orbital motion

- Gluon helicity, $\Delta g(x)$, needed for proton spin puzzle
- Longitudinally polarized protons access $\Delta g(x)$ through measurement of the longitudinal double spin asymmetry

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \propto \sum_{a,b} \frac{\Delta f_a(x_a) \Delta f_b(x_b) d\sigma^{ab \to cX} D_c^h(z_c)}{f_a(x_a) f_b(x_b) d\sigma^{ab \to cX} D_c^h(z_c)}$$



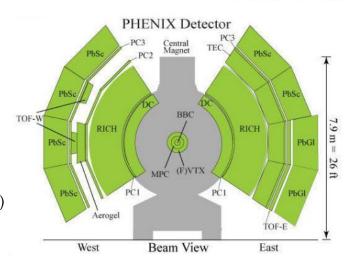
Polarized Physics Runs at PHENIX

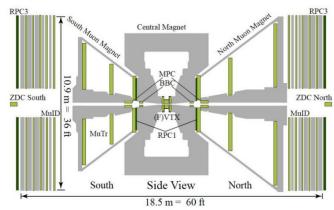
RHIC is the world's first polarized proton collider

Year	System	\sqrt{s} (GeV)	Polarization Direction	Recorded Luminosity (pb^{-1})
2006	p+p	62.4	transverse	0.02
		02.4	longitudinal	0.08
		200	transverse	2.7
			longitudinal	7.5
2008	p+p	200	transverse	5.2
2009	p+p	200	longitudinal	16
		500	longitudinal	14
2011	p+p	500	longitudinal	18
2012	p+p	200	transverse	9.7
		510	longitudinal	32
2013	p+p	510	longitudinal	155
2015	p+p			60
	p+Au	200	transverse	1.27
	p+AI			3.97

PHENIX Detector

Midrapidity

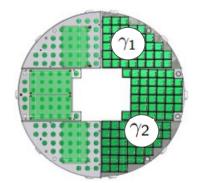

- $|\eta| < 0.35$
- Tracking: drift chamber (DC), pad chambers (PC)
- □ RICH
 - ☐ PID for electrons and charged pions
- ☐ TOF
 - PID for low momentum charged particles (pions,kaons,protons)
- □ EMCal
 - ☐ Energy deposits of photons and electrons

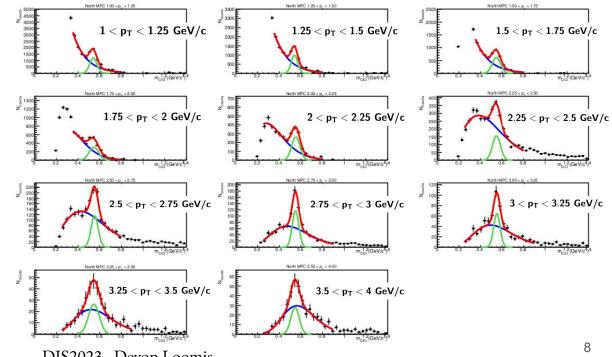

Forward rapidity

- ☐ Muon Piston Calorimeter (MPC)
 - \blacksquare π^0 and η identification through $\pi^0 \to \gamma \gamma$ and $\eta \to \gamma \gamma$
 - \neg 3.0 < $|\eta|$ < 3.8

- ☐ Collision vertex
- ☐ Minimum bias trigger

Cross Section Results

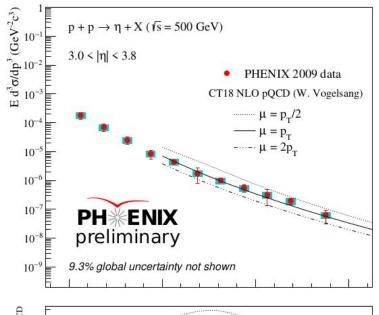


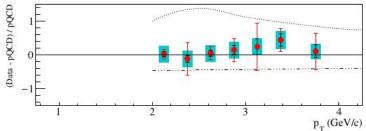

Forward η meson cross section

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{\mathcal{L}} \frac{1}{\mathcal{B}\mathcal{R}_{\eta \to \gamma\gamma}} \frac{1}{2\pi p_{T}} \frac{\Delta N^{meas}}{\epsilon_{trig}\epsilon_{reco}\Delta p_{T}\Delta \eta}$$

 $\eta \to \gamma \gamma$ reconstructed as pairs of photon clusters in the MPC

Clear signal peaks in minimum bias data from $1 < p_T < 4 \text{ GeV/c}$

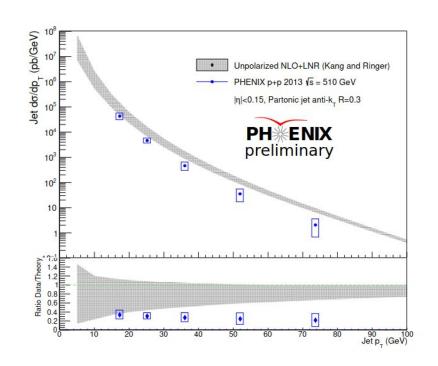

Forward η meson cross section


- First measurement of η meson cross section at forward rapidity at 500 GeV
- Consistent with NLO pQCD using CT18 PDFs and AESSS η meson fragmentation functions
- New input for relatively poorly constrained η meson fragmentation functions

$$\Box$$
 $\delta D_{u,d}^{\eta} = ^{+30\%}_{-20\%}$

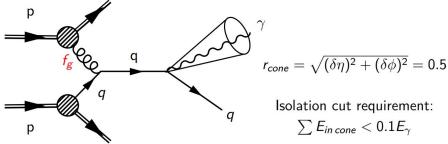
$$\Box$$
 $\delta D_{g}^{\eta} = \pm 15\%$

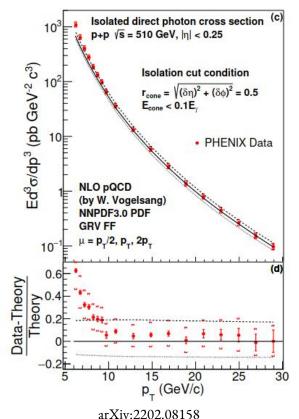
PRD. 83 034002 (2011)



Midrapidity jet cross section

- ☐ Small jet radius R=0.3 with anti-kT jet clustering algorithm
- NLO + ln(R) resummation theory calculation overestimates data for small R jets
 - Partonic level calculation does not account for MPI and hadronization effects
 - Similar effect found in CMS, ALICE small R jets



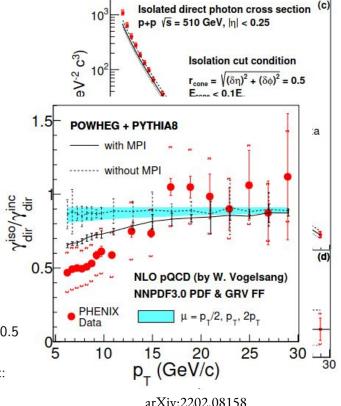

Midrapidity direct photon cross section

- Dominated by quark-gluon compton scattering $qg \rightarrow \gamma q$
- ☐ Isolation cut removes parton fragmentation to photon and quark bremsstrahlung

DIS2023 - Devon Loomis

Midrapidity direct photon cross section

- Dominated by quark-gluon compton scattering $qg \rightarrow \gamma q$
- ☐ Isolation cut removes parton fragmentation to photon and quark bremsstrahlung
- NLO pQCD underestimates inclusive cross section but is roughly consistent with isolated cross section
 - \square MPI lessens data/theory disagreement at low p_T

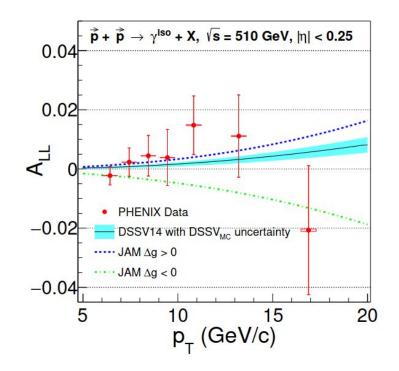


 $r_{cone} = \sqrt{(\delta \eta)^2 + (\delta \phi)^2} = 0.5$

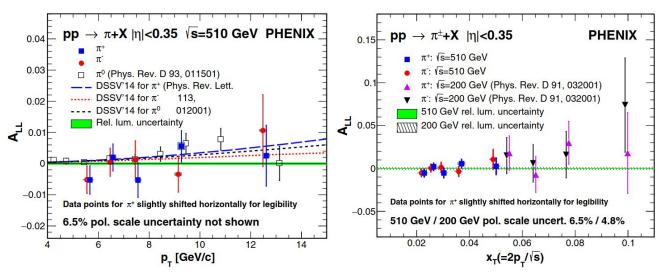
Isolation cut requirement:

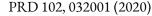
 $\sum E_{in\,cone} < 0.1 E_{\gamma}$

DIS2023 - Devon Loomis

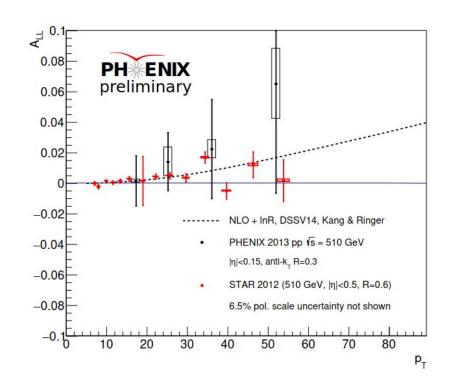

Longitudinal Spin Results

Midrapidity direct photon A_{LL}


- \Box First published direct photon A_{LL}
- Theoretically clean measurement: little fragmentation contributions
- Sensitive to sign and magnitude of $\Delta g(x)$
- ☐ Consistent with DSSV14 global analysis



Midrapidity charged pion A_{LL}


- \Box Higher energy charged pion A_{LL} probes x down to 0.02
- Consistent with DSSV14 for π^+, π^- , and π^0
- \Box Sensitive to $\Delta g(x)$

Midrapidity jet A_{LL}

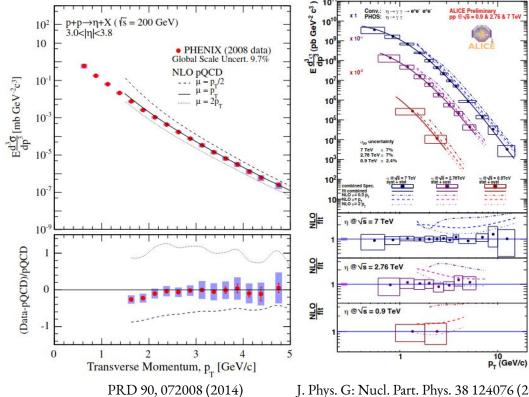
- ☐ Consistent with STAR 510 GeV data and NLO + ln(R) resummation calculation within large uncertainties
- Unfolding applied to correct energy resolution from underlying event fluctuations

Summary

- Recent PHENIX measurements access:
 - Gluon and flavor-separated quark fragmentation functions (forward eta meson cross section)
 - Unpolarized parton distribution functions (inclusive jet cross section, direct photon cross section)
 - Gluon helicity distribution (midrapidity jet A_{LL} , midrapidity direct photon A_{LL} , midrapidity charged pion A_{LL})
- Future measurements: forward π^0 cluster and η meson A_{LL} at 510 GeV will access low x region (x ~ 10⁻³) of gluon helicity distribution

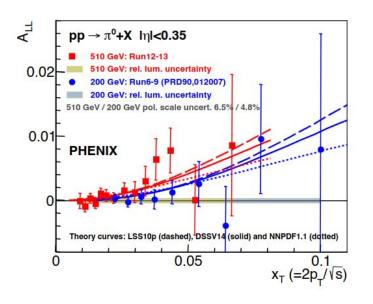
Backup

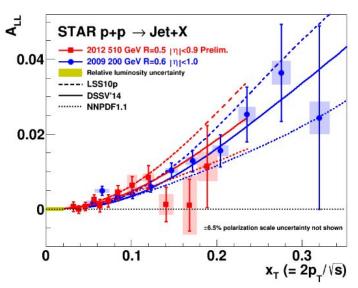
Dominant partonic processes at PHENIX


Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \to \pi + X$	$ec{g}ec{g} o gg$	Δg	good
	$ec{q}ec{g} o qg$		3
$\vec{p}\vec{p} \to \text{jet(s)} + X$	$ec{g}ec{g} o gg \ ec{q}ec{g} o qg$	Δg	(as above)
	$\begin{array}{c} \overrightarrow{q}\overrightarrow{g} \rightarrow \gamma q \\ \overrightarrow{q}\overrightarrow{g} \rightarrow \gamma q \end{array}$	$\begin{array}{c c} \Delta g \\ \Delta g \end{array}$	3
$\vec{p}\vec{p} \to \gamma\gamma + X$	$ec{q}ec{q} o\gamma\gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \to DX, BX$	$ec{g}ec{g} ightarrow car{c}, bar{b}$	Δg	3000

meson cross sections

- 200 GeV forward η cross section from PHENIX consistent with NLO pQCD
- NLO pQCD agrees with 900 GeV ALICE midrapidity η cross section but overestimates cross section at 7 TeV and 8 TeV





J. Phys. G: Nucl. Part. Phys. 38 124076 (2011)

RHIC π^0 A_{LL} at 510 GeV

 π^0 A_{LL} from RHIC at 510 GeV confirmed nonzero $\Delta g(x)$ and extended x down to 0.01

