Spin Density Matrix Elements in hard exclusive light vector meson muoproduction at COMPASS

Vincent Andrieux on behalf of the COMPASS Collaboration

University of Illinois at Urbana-Champaign

DIS 2023 March 27th-31st East-Lansing (Michigan)

Vincent Andrieux (UIUC)

Motivations

1.11	<i>••</i>		Quark Polarisation			
			Unpolarised (U)	Longitudinally polarised (L)	Tranversely polarised (T)	
GPDs	larisation	υ	H		\bar{E}_T	
		L		$ ilde{H}$	$ ilde{E}_T$	
	Nucleon Po	т	E	$ ilde{E}$	H_T, \tilde{H}_T	

Nucleon is a complex object

Most comprehensive description provided by universal non perturbative functions:

- Transverse Momentum Dependent PDFs
- Generalised Parton Distributions

 $\delta z_{\perp} = 1/q$

Motivations

Accessible via:

 \Rightarrow DVCS talk by A. Koval for COMPASS results

Nucleon is a complex object

Most comprehensive description provided by universal non perturbative functions:

- Transverse Momentum Dependent PDFs
- Generalised Parton Distributions

This talk: GPDs

- Encode usual PDF and Form factors
- 4 Chiral-even: $H^{q,g}$, $E^{q,g}$, $\tilde{H}^{q,g}$, $\tilde{E}^{q,g}$
- 4 Chiral-odd: $H_T^{q,g}$, $\tilde{H}_T^{q,g}$, $E_T^{q,g}$, $\tilde{E}_T^{q,g}$
 - \Rightarrow Deeply virtual meson production

Deep virtual meson production

Factorization proven for σ_L σ_T suppressed by $1/Q^2$ Vincent Andrieux (UIUC) Kinematics of reaction:

- x: average longitudinal momentum fraction \rightarrow not accessible
- ξ : half longitudinal momentum fraction exchanged between initial and final parton $\sim x_B/(2-x_B)$
- t: four-momentum transfer to target
- $Q^2 = -q^2$: photon virtuality

Interest for vector mesons:

- Sensitive to gluon GPDs (same order in α_s): H & E
- Provide different flavour combinations, e.g.:

Diehl, Vinnikov, PLB 609 (2005)

- $F_{\rho} = \frac{1}{\sqrt{2}} (\frac{2}{3}F^{u} + \frac{1}{3}F^{d} + \frac{3}{4}F^{g}/x)$ • $F_{\omega} = \frac{1}{\sqrt{2}} (\frac{2}{3}F^{u} - \frac{1}{3}F^{d} + \frac{1}{4}F^{g}/x)$ • $F_{\phi} = -\frac{1}{3}F^{s} + \frac{1}{4}F^{g}/x$
 - \Rightarrow COMPASS can measure ρ , ω , ϕ , J/ψ

Spin density matrix elements of vector mesons

Bilinear combinations of the helicity amplitudes F

- Helicity amplitudes, F, describe transitions $\lambda_{\gamma}, \lambda_{N} \rightarrow \lambda_{V}, \lambda_{N'}$ depend on W, Q^{2}, p_{T}^{2}
- $\rho_{\lambda_V,\lambda'_V}$ decomposes into 9 matrices $\rho^{\alpha}_{\lambda_V,\lambda'_V}$ depending on the photon pol. states: Transv. polarised (α =0-3), Long. polarised (α =4), Inter. polarised (α =5-8)

We actually measure:

$$r^{\alpha}{}_{\lambda_{V},\lambda_{V}'} = S\rho^{\alpha}{}_{\lambda_{V},\lambda_{V}'} (1+\epsilon R)^{-1}, \text{S=1 for } \alpha = 1-3, \text{S} = \sqrt{R} \text{ for } \alpha = 5-8$$

$$r^{04}{}_{\lambda_{V},\lambda_{V}'} = (\rho^{0}{}_{\lambda_{V},\lambda_{V}'} + \epsilon R\rho^{4}{}_{\lambda_{V},\lambda_{V}'})(1+\epsilon R)^{-1}$$

using K. Schiling and G. Wolf (Nucl. Phys. B 61 (1973) 381) definition in absence of photon $R = \sigma_L/\sigma_T$ separation

 ϵ is the virtual photon polarisation parameter

Spin density matrix elements of vector mesons

- Helicity amplitudes, F, describe transitions $\lambda_{\gamma}, \lambda_{N} \rightarrow \lambda_{V}, \lambda_{N'}$ depend on W, Q^{2} , p_{T}^{2}
- $\rho_{\lambda_V,\lambda'_V}$ decomposes into 9 matrices $\rho^{\alpha}_{\lambda_V,\lambda'_V}$ depending on the photon pol. states: Transv. polarised (α =0-3), Long. polarised (α =4), Inter. polarised (α =5-8)

In GPD models for vector mesons:

- \Rightarrow Natural parity exchange amplitudes \Rightarrow H, E: Dominant contribution at LO & LT
- $\Rightarrow\,$ Unnatural parity exchange amplitudes $\Rightarrow\,\tilde{H},\,\tilde{E}$ and pion pole
- \Rightarrow s-channel helicity conservation violation: $\gamma_T \rightarrow V_L \Rightarrow$ transverse GPDs H_T , \bar{E}_T

COMPASS apparatus for exclusive reaction measurements

Two-stage spectrometer in NA of CERN SPS

NIMA 577 (2007) 455, NIMA 779 (2015) 69

Event selection of ω

 \Rightarrow Final sample: 3,060 events

of SIDIS

used

Event selection of ρ

arXiv:2210.16932, acc. EPJC

Vincent Andrieux (UIUC)

Main kinematic selection:

- $1 < Q^2/(\text{GeV}/c)^2 < 10$ \Leftarrow pQCD & minimisation of SIDIS • $W > 5 \text{ GeV}/c^2$ \Leftarrow suppress resonance region
- $0.01 < p_T^2/({\rm GeV}/c)^2 < 0.5 \Leftarrow$ angular resolution & SIDIS bkg
- 0.1 < y < 0.9 \Leftarrow Poor reconstruction and large radiative corr.

Recoil proton detector limits low p_T^2 of meson \rightarrow not used Instead:

 $|E_{miss}| = \frac{|M_X^2 - M_p^2|}{2M_p} < 2.5$ (GeV) & subtract SIDIS background \Rightarrow Final sample: 52,260 events

Through angular dependence of production cross section:

 $\frac{d\sigma}{d\Phi d\phi d\theta} \propto W^{U+L}(\Phi,\phi,\theta) = W^U(\Phi,\phi,\theta) + P_{\mu}W^L(\Phi,\phi,\theta)$

23 SDMEs in total, 15 "unpolarised" and 8 "polarised" for different angular/kinematic dependence

Extraction from Unbinned Maximum Likelihood fit of experimental data with:

- Isotropic MC HEPGEN exclusive process
- LEPTO MC for SIDIS
- $\bullet~{\rm Background}\sim 20\%$

production plane

If SCHC ($\lambda_{\gamma} = \lambda_{V}$):

 $\begin{array}{l} r_{1-1}^1 & + \operatorname{Im}(r_{1-1}^2) = 0 = 0.000 \pm 0.005 \pm 0.003 \\ \operatorname{Re}(r_{10}^5) + \operatorname{Im}(r_{10}^6) & = 0 = 0.011 \pm 0.002 \pm 0.002 \\ \operatorname{Im}(r_{10}^7) - \operatorname{Re}(r_{10}^8) & = 0 = 0.009 \pm 0.014 \pm 0.028 \end{array}$

All other elements of C, D, E should be 0

Clear deviation for $\gamma_T^* \rightarrow \rho_L$ elements

Interpretation with trans. GPDs:

Goloskokov, Kroll, EPJC 74 (2014) 2725 $r_{00}^{5} \propto \operatorname{Re}[\langle \bar{E_{T}} \rangle_{LT}^{*} \langle H \rangle_{LL} + \frac{1}{2} \langle H_{T} \rangle_{LT}^{*} \langle E \rangle_{LL}]$ $\rho: \text{ Dominance of first term} \rightarrow \text{probing } \bar{E_{T}}$ $F_{\rho} = \frac{1}{\sqrt{2}} (\frac{2}{3} F^{u} + \frac{1}{3} F^{d})$ with same sign between $u \And d$ GPDs for H and \bar{E}_{T} ,
while opposite for H_{T} and E COMPASS arXiv:2210.16932, acc EPJC

If SCHC ($\lambda_{\gamma} = \lambda_{V}$):

 $\begin{array}{l} r_{1-1}^1 &+ \operatorname{Im}(r_{1-1}^2) = 0 = 0.000 \pm 0.005 \pm 0.003 \\ \operatorname{Re}(r_{10}^5) + \operatorname{Im}(r_{10}^6) &= 0 = 0.011 \pm 0.002 \pm 0.002 \\ \operatorname{Im}(r_{10}^7) - \operatorname{Re}(r_{10}^8) &= 0 = 0.009 \pm 0.014 \pm 0.028 \end{array}$

All other elements of C, D, E should be 0

Clear deviation for $\gamma^*_T \rightarrow \rho_L$ elements

Comparison with HERMES results:

- Similar Q^2 and t but $W_{\text{HERMES}} < W_{\text{COMPASS}}$
- Similar trend despite differences
- Restricted to similar *W* range: observables are compatible

COMPASS arXiv:2210.16932, acc EPJC, HERMES, EPJC 62 (2009) 659

COMPASS preliminary

Spin density elements of ω

If SCHC ($\lambda_{\gamma} = \lambda_{V}$):

 $\begin{array}{l} r_{1-1}^1 & + \mathrm{Im}(r_{1-1}^2) = 0 = -0.010 \pm 0.032 \pm 0.047 \\ \mathrm{Re}(r_{10}^5) + \mathrm{Im}(r_{10}^6) = 0 = & 0.014 \pm 0.011 \pm 0.013 \\ \mathrm{Im}(r_{10}^7) - \mathrm{Re}(r_{10}^8) = 0 = -0.088 \pm 0.110 \pm 0.196 \end{array}$

All other elements of C, D, E should be 0

Clear deviation for $\gamma_T^* \rightarrow \rho_L$ elements

Interpretation with trans. GPDs:

Goloskokov, Kroll, EPJC 74 (2014) 2725

 $r_{00}^5 \propto {\sf Re}[\langle ar{E_T}
angle^*_{LT} \langle H
angle_{LL} + rac{1}{2} \langle H_T
angle^*_{LT} \langle E
angle_{LL}]$

 $\omega: \text{ 2 terms contribute} \to \text{probing } \bar{E_T} \& H_T$ $F_{\omega} = \frac{1}{\sqrt{2}} (\frac{2}{3}F^{\mu} - \frac{1}{3}F^d)$ with same sign between u & d GPDs for H and \bar{E}_T ,
while opposite for H_T and E

COMPASS EPJC 81 (2021) 126

If SCHC ($\lambda_{\gamma} = \lambda_{V}$):

 $\begin{array}{l} r_{1-1}^1 & + {\rm Im}(r_{1-1}^2) = 0 = -0.010 \pm 0.032 \pm 0.047 \\ {\rm Re}(r_{10}^5) + {\rm Im}(r_{10}^5) = 0 = & 0.014 \pm 0.011 \pm 0.013 \\ {\rm Im}(r_{10}^7) - {\rm Re}(r_{10}^8) = 0 = -0.088 \pm 0.110 \pm 0.196 \end{array}$

All other elements of C, D, E should be 0

Clear deviation for $\gamma_T^* \rightarrow \rho_L$ elements

Compared to GK model:

 \rightarrow r_{00}^{04} is significantly larger than measured \rightarrow SCHC almost compatible with 0

COMPASS EPJC 81 (2021) 126, GK model EPJA 50 (2014) 146

Quantification of NPE/UPE asymmetry for $\gamma^*_T \rightarrow V_T$:

Longitudinal-to-transverse cross-section ratio

L-L Chau Wang Phys. Rev 142 (1966) 1187 $R' = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}} \text{ can be interpreted as}$ $R = \frac{\sigma_L(\gamma_L^* \rightarrow V)}{\sigma_T(\gamma_T^* \rightarrow V)} \text{ in case of SCHC} \Rightarrow$

A. Airapetian et al., EPJC 62 (2009) 659 $\tilde{R} \sim R'$ taking into account: \rightarrow SCHC violation \rightarrow only NPE

All experiments with $Q^2>1$ (GeV 2) for ho production

Deviation from pQCD LO prediction, $R = Q^2/M_\rho^2$ Transverse size effects of the meson smaller for σ_L than σ_T $\Rightarrow\,$ SDME in DVMP of ρ and ω from 2012 pilot run were shown

```
arXiv:2210.16932, acc EPJC
```

EPJC 81 (2021) 126

- ⇒ Violation of s-channel helicity conservation for transition $\gamma_T^* \rightarrow V_L$ is observed in GPD framework it implies contribution from chiral-odd GPDs
- $\Rightarrow\,$ Only NPE for ρ production, unlike large UPE contribution for ω
- \Rightarrow Measurement of R in agreement with previous experiments

Ongoing analyses of exclusive production of π^0 , ϕ , ω and J/ ψ with 2016/2017 data \Rightarrow 10 × larger than from 2012

Stay tuned

BACKUP

SDME dependence upon Q^2 : $\rho(\text{left})$, $\omega(\text{right})$

🍎 Vincent Andrieux (UIUC)

East-Lansing (MI) March-2023

SDME dependence upon p_T^2 : $\rho(\text{left})$, $\omega(\text{right})$

SDME dependence upon *W*: $\rho(\text{left})$, $\omega(\text{right})$

