Angular distribution measurement of proton-induced Drell-Yan process by the SeaQuest experiment at Fermilab

Kei Nagai Los Alamos National Laboratory

BORATORY on behalf of the SeaQuest Collaboration

March 30th, 2023

XXX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2023)

Michigan

- 1. Drell-Yan process and proton structure
- 2. Angular distribution
- 3. Measurement by SeaQuest
- 4. Summary

1. Drell-Yan process and proton structure

Access proton structure

- Deep Inelastic scattering experiments have investigated the proton structure
 - Scattering with all charged partons $(u, d, \bar{u}, \bar{d}, \cdots)$
 - Great achievement for u, d quarks PDFs

Drell-Yan process

$$ightharpoonup q + \bar{q} \rightarrow \gamma^* \rightarrow l + \bar{l}$$

- Antiquark is always involved in the reaction
- Access antiquarks PDFs
- ► If the hadron is the proton, antiquark is always sea quark

Proton antiquark flavor asymmetry d/\bar{u}

February 2021: The asymmetry of antimatter in the proton Nature **590**, 561 (2021)

- Antiquark flavor asymmetry \bar{d}/\bar{u} (antiquark PDF) of the proton at large x (0.13 < x < 0.45)
 - \triangleright x: Bjorken x, momentum fraction of parton to the proton
- $d/\bar{u} > 1.0$ in all measured range

3D Structure

PDF

Function of longitudinal momentum x (1-dim)

- TMD (Transverse-momentum dependent parton distribution function)
 - ► Longitudinal momentum x + transverse momentum \vec{k}_{\perp} (3-dim)
 - ► Research on the effect of spin

TMDs

		Quarks			
		Unpolarized	Longitudinally Polarized	Transversally Polarized	A A l d a u a
N	U	f_1 •		h_1^{\perp} \bullet \bullet	-Mulders
u C	L		$g_{1L} \leftrightarrow - \leftrightarrow$	h_{1L}^{\perp} \longrightarrow -	
e	-	Sivers	a^{\perp} $\stackrel{\bullet}{\Leftrightarrow}$	h_{1T} \bullet \bullet	
o n	1	$J_{1T} \bullet - \bullet$	$g_{1T}^{\perp} \Theta - \Theta$	$h_{1T}^{\perp} \stackrel{\bullet}{\triangleright} - \stackrel{\bullet}{\triangleright}$	

Boer–Mulders function

- ► Unpol. target and unpol. beam
- ► Relation between quark transverse spin and transverse momentum
- ► Research on <u>Lam-Tung relation</u>

2. Angular Distribution

Angular distribution of Drell-Yan

- Collins–Soper frame
 - Virtual photon rest frame
 - $\blacktriangleright \theta$: polar angle of positive lepton
 - ϕ : azimuthal angle of positive lepton

• Drell-Yan cross section

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

- ▶ Naively, $\lambda = 1$, $\mu = \nu = 0$ ($d\sigma \propto 1 + \cos^2 \theta$) at leading order
 - **★** No transverse momentum on quarks
 - **★** No gluon emission
- ► NLO: $\lambda \neq 1$, μ , $\nu \neq 0$, but λ and ν still satisfy $1 \lambda = 2\nu$ (Lam-Tung relation)
- Lam-Tung relation
 - ► Analogue of Callan–Gross relation (scattering of spin 1/2 particles)
 - ► Satisfied when the quark-antiquark axis is coplanar to hadron plane

Lam-Tung violation

- NA10 (CERN), E615 (Fermilab)
 - $\blacktriangleright \pi^-(\bar{u}d)+W$
 - ► NA10: 194 GeV, E615: 252 GeV beam
 - ▶ L–T violation @ large p_T
- E866 (Fermilab)
 - ▶ p+d (p+p), 800 GeV beam
 - ► Smaller L–T violation than π beam experiments

Size of L-T violation depends on beam type

Phys. Rev. Lett. 99, 082301, (2007)

Boer-Mulders function

- ullet Boer-Mulders function and u
 - $\nu/2 \propto h_1^{\perp}(\text{beam})h_1^{\perp}(\text{target})$
- B-M function of sea quarks doesn't have to be the same as that of valence quarks
 - π beam: antiquark as valence quark, valence quark-valence antiquark reaction is dominant
 - proton beam: no antiquarks as valence quarks, sea quarks are always involved in the reaction

L–T violation and ν depend on beam type

 \rightarrow B-M is one of the candidates of the cause

Phys. Rev. Lett. 99, 082301, (2007)

3. Measurement by SeaQuest

E906/SeaQuest experiment

- Fermi National Accelerator Laboratory (FNAL)
 - ▶ 120 GeV proton beam provided by Main Injector
- Fixed target Drell-Yan experiment
 - ► Typical momentum of the muon ~ 40 GeV
- Four tracking stations
 - ► Drift chamber (St.1-3) or proportional tube (St.4)
 - ▶ Hodoscopes
- Data acquisition: 2014-2017
 - ► 8.6×10^{17} protons on target

Motivation of angular distribution measurement by SeaQuest

- Angular distribution results by fixed-target x proton beam are only by E866 at this present
 - SeaQuest will give another set of results
- Different kinematics of E866
 - ► Gives Boer–Mulders function at a larger *x* region
- ullet Full ϕ range measurement
 - ▶ Suitable to extract μ and ν
 - $\blacktriangleright \lambda$ is currently fixed to 1.0
- Baseline of E1039
 - ► E1039: polarized targets
 SeaQuest: unpolarized targets
 - Pure hydrogen (and deuterium) angular distribution

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

SeaQuest: 120 GeV proton beam

E866 : 800 GeV proton beam

- μ is consistent with 0.0 within the uncertainty.
- Consistent with E866 p-p results.

SeaQuest: 120 GeV proton beam

E866 : 800 GeV proton beam

• Non-zero ν is obtained.

SeaQuest: 120 GeV proton beam E866 : 800 GeV proton beam

• SeaQuest provides the data at a large x_2 range

SeaQuest: 120 GeV proton beam

E866 : 800 GeV proton beam

E615 : 252 GeV π^- beam

NA10 : 194 GeV π^- beam

- The SeaQuest ν result is larger than E866 p-p results.
- Similar level as pion-induced Drell-Yan results.
 - ► Further analysis with full data will give accurate results.
 - p-d analysis will also be performed.

Summary & Outlook

- The sea-quarks and antiquarks structure of the proton is probed by Drell-Yan process accurately.
 - ► Access sea-quark Boer–Mulders function (represents the relation of transverse momentum and spin)
- Boer-Mulders function is one of the candidates causing Lam-Tung violation.
- Release SeaQuest preliminary results of μ and ν
 - $\blacktriangleright \mu$ is consistent with 0.0.
 - Large ν is obtained.
 - Results are obtained with 40% of full SeaQuest data. Statistics will be doubled in the final results.
 - ► Results on p-p Drell-Yan angular distribution are reported here. The results on p-d Drell-Yan angular distribution will be released soon.

Backup

Sea Chief Analysis Procedure

- Prepare correction factors 2-dimensional histograms
 - Accepted simulation / 4pi simulation acceptance factor
 - ► Realistic simulation / accepted simulation reconstruction efficiency factor
- 2-dimensional un-binned p-p data
 - p-p data / acceptance factor / reconstruction efficiency factor
- Subtract background from p-p data
- Fit with

$$A \times \left(1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi\right)$$

 $\blacktriangleright \lambda = 1$ (FIXED) and extracted μ and ν

Condition of Lam-Tung Relation

- Introduce quark plane in Collins–
 Soper frame
 - θ_1 : polar angle of quark
 - ϕ_1 : azimuthal angle of quark
- Lam–Tung relation:
 - $\langle \sin^2 \theta_1 \rangle = \langle \sin^2 \theta_1 \cos 2\phi_1 \rangle$
 - ▶ Lam–Tung relation is satisfied when $\phi_1 = 0$
 - → Quark plane and hadron plane are common

p_T dependence of ν in pQCD

- SeaQuest p+p 120 GeV,
 NLO Drell-Yan
- Boer-Mulders function is not included (pure pQCD)
- Large ν is expected even without Boer–Mulders function
 - Difference between experimental results and pQCD results is important

PHYS. REV. D **99**, 014032 (2019)

