Angular distribution measurement of proton-induced Drell-Yan process by the SeaQuest experiment at Fermilab

Kei Nagai

Los Alamos National Laboratory
Los Alamos
National laboatory on behalf of the SeaQuest Collaboration

March 30th, 2023
XXX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2023) Michigan

1. Drell-Yan process and proton structure
2. Angular distribution
3. Measurement by SeaQuest
4. Summary

5. Drell-Yan process and proton structure

Sea

- Drell-Yan process
- $q+\bar{q} \rightarrow \gamma^{*} \rightarrow l+\bar{l}$
- Antiquark is always involved in the reaction
- Access antiquarks PDFs
- If the hadron is the proton, antiquark is always sea quark

February 2021: The asymmetry of antimatter in the proton Nature 590, 561 (2021)

- Antiquark flavor asymmetry \bar{d} / \bar{u} (antiquark PDF) of the proton at large $x(0.13<x<0.45)$
- x : Bjorken x, momentum fraction of parton to the proton
- $\bar{d} / \bar{u}>1.0$ in all measured range

Seectiest 3D Structure

- PDF
- Function of longitudinal momentum x (1-dim)

- TMD (Transverse-momentum dependent parton distribution function)
- Longitudinal momentum $x+$ transverse momentum \vec{k}_{\perp} (3-dim)
- Research on the effect of spin

Seactuasi TMDs

TMDs

- Boer-Mulders function
- Unpol. target and unpol. beam
- Relation between quark transverse spin and transverse momentum
- Research on Lam-Tung relation

Seceraict Angular distribution of Drell-Yan

- Collins-Soper frame
- Virtual photon rest frame
- θ : polar angle of positive lepton
- ϕ : azimuthal angle of positive lepton
- Drell-Yan cross section

$\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi$
- Naively, $\lambda=1, \mu=\nu=0\left(d \sigma \propto 1+\cos ^{2} \theta\right)$ at leading order
\star No transverse momentum on quarks
\star No gluon emission
- NLO: $\lambda \neq 1, \mu, \nu \neq 0$, but λ and ν still satisfy $1-\lambda=2 \nu$ (Lam-Tung relation)
- Lam-Tung relation
- Analogue of Callan-Gross relation (scattering of spin $1 / 2$ particles)
- Satisfied when the quark-antiquark axis is coplanar to hadron plane

Seateverit Lam-Tung violation

- NA10 (CERN), E615 (Fermilab)
- $\pi^{-}(\bar{u} d)+W$
- NA10: 194 GeV , E615: 252 GeV beam
- L-T violation @ large p_{T}
- E866 (Fermilab)
- p+d (p+p), 800 GeV beam
- Smaller L-T violation than π beam experiments

Phys. Rev. Lett. 99, 082301, (2007)

Secernicic Boer-Mulders function

- Boer-Mulders function and ν
- $\nu / 2 \propto h_{1}^{\perp}$ (beam) h_{1}^{\perp} (target)
- $\underline{B-M \text { function of sea quarks doesn't }}$ have to be the same as that of valence quarks
- π beam: antiquark as valence quark, valence quark-valence antiquark reaction is dominant
- proton beam: no antiquarks as valence quarks, sea quarks are always involved in the reaction

L-T violation and ν depend on beam type $\rightarrow B-M$ is one of the candidates of the cause

3.Measurement by SeaQuest

Secer

- Fermi National Accelerator Laboratory (FNAL)
- 120 GeV proton beam provided by Main Injector
- Fixed target Drell-Yan experiment
- Typical momentum of the muon $\sim 40 \mathrm{GeV}$
- Four tracking stations
- Drift chamber (St.1-3) or proportional tube (St.4)
- Hodoscopes
- Data acquisition: 2014-2017
- 8.6×10^{17} protons on target

Motivation of angular distribution measurement by SeaQuest

- Angular distribution results by fixed-target x proton beam are only by E866 at this present
- SeaQuest will give another set of results
- Different kinematics of E866
- Gives Boer-Mulders function at a larger x region
- Full ϕ range measurement $\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi$
- Suitable to extract μ and ν
- λ is currently fixed to 1.0
- Baseline of E1039
- E1039: polarized targets SeaQuest: unpolarized targets

Seat

SeaQuest: 120 GeV proton beam E866 : 800 GeV proton beam

- μ is consistent with 0.0 within the uncertainty.
- Consistent with E866 p-p results.

E906 Preliminary Results

SeaQuest: 120 GeV proton beam E866 : 800 GeV proton beam

- Non-zero ν is obtained.

Seatyinit Preliminary Results

SeaQuest: 120 GeV proton beam

- SeaQuest provides the data at a large x_{2} range

Seatyinit Preliminary Results

SeaQuest: 120 GeV proton beam E866 : 800 GeV proton beam
E615 : $252 \mathrm{GeV} \pi^{-}$beam
NA10 : $194 \mathrm{GeV} \pi^{-}$beam

- The SeaQuest ν result is larger than E866 p-p results.
- Similar level as pion-induced Drell-Yan results.
- Further analysis with full data will give accurate results.
- p-d analysis will also be performed.

Seer mesis
 Summary \& Outlook

- The sea-quarks and antiquarks structure of the proton is probed by Drell-Yan process accurately.
- Access sea-quark Boer-Mulders function (represents the relation of transverse momentum and spin)
- Boer-Mulders function is one of the candidates causing Lam-Tung violation.
- Release SeaQuest preliminary results of μ and ν
- μ is consistent with 0.0.
- Large ν is obtained.
- Results are obtained with 40% of full SeaQuest data. Statistics will be doubled in the final results.
- Results on p-p Drell-Yan angular distribution are reported here. The results on p-d Drell-Yan angular distribution will be released soon.

荘解sid Analysis Procedure

- Prepare correction factors - 2-dimensional histograms
- Accepted simulation / 4pi simulation - acceptance factor
- Realistic simulation / accepted simulation - reconstruction efficiency factor
- 2-dimensional un-binned p-p data
- p-p data / acceptance factor / reconstruction efficiency factor
- Subtract background from p-p data
- Fit with
$A \times\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)$
- $\lambda=1$ (FIXED) and extracted μ and ν

See tios Condition of Lam-Tung Relation

- Introduce quark plane in CollinsSoper frame
- θ_{1} : polar angle of quark
- ϕ_{1} : azimuthal angle of quark
- Lam-Tung relation:
- $\left\langle\sin ^{2} \theta_{1}\right\rangle=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle$
- Lam-Tung relation is satisfied when $\phi_{1}=0$
\rightarrow Quark plane and hadron plane are common
- SeaQuest p+p 120 GeV , NLO Drell-Yan

PHYS. REV. D 99, 014032 (2019)

- Boer-Mulders function is not included (pure pQCD)
- Large ν is expected even without Boer-Mulders function
- Difference between experimental results and pQCD results is important

