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FemtoNet Publications

Machine Learning

● Deep Learning Analysis of Deeply Virtual Exclusive Photoproduction PRD 104 (2021)
● Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive 

Scattering Experiments arXiv:2207.10766
● VAIM - CFF: A variational autoencoder inverse mapper solution to Compton form factor 

extraction from deeply virtual exclusive reactions (in progress)
● Deep learning partonic angular momentum through VAIM (in progress)

Phenomenology
● Extraction of generalized parton distribution observables from deeply virtual electron 

proton scattering experiments PRD 101 (2020)
● Theory of deeply virtual Compton scattering off the unpolarized proton PRD 105 (2022)
● Novel Rosenbluth extraction framework for Compton form factors from deeply virtual 

exclusive experiments PLB 829 (2022)
● Parametrization of quark and gluon generalized parton distributions in a dynamical 

framework PRD 105 (2022)
● Deeply virtual Compton scattering from fixed target to collider settings (in progress)
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Some physics motivation …
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Spin as an emergent phenomena of QCD dynamics

The naive parton model cannot 
explain the origin of hadronic 
properties such as spin.

Orbital motion (dynamics) of 
the quarks and gluons could 
be the answer. 

How do we describe orbital angular momentum of partons?
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Generalized Parton Distributions

It was shown that the quantum correlation functions that can describe the 
consequences of orbital dynamics of partons in the nucleon are the 3D generalized 
parton distributions (GPDs).

X. Ji PRL. 78 (1997)
A. Radyushkin PRD. 56 (1997)

D. Muller, et. al. (1994)
M. Diehl Phys.Rep. (2003)

Image credit: A. Rajan, M. Engelhardt, S. Liuti PRD 98 (2018)

New 
information 
on parton 
dynamics!
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How to measure GPDs? Deeply virtual Compton scattering

+

2

B.Kriesten, S.Liuti, et. al. PRD. 101 (2020)

+ +
DVCS is known to probe generalized 
parton distributions and is 
accompanied by various background 
processes.

DVCS BH

Gluon Transversity Higher Twist

X. Ji, PRD. 55 (1997)

Important, but reserved for later …
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However … there’s a catch!

In the DVCS cross section, GPDs come 
convoluted with Wilson coefficient 
functions (Compton Form Factors) 
meaning we only have experimental 
access to integrals (ReCFF) or specific 
points in x (ImCFF) of these 
distributions.

factorization

Not the same integral for angular momentum!
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What does the DVCS cross section look like?

The cross section has three components that contribute to leading order

No CFFs

Linear CFFs: 3

Quadratic CFFs: 8

All 8 CFFs enter into a single polarization observable!
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A Physics Informed Deep Learning Framework …
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GPD extraction is a really difficult problem!

There are many levels of abstraction going from experimental cross sections to 
calculating the physical properties of the hadron.

Exclusive 
Scattering 

Data

CFF 
Extraction

GPD 
Modelling

Hadron 
Structure

Exclusive 
scattering theory

Lattice QCD 
calculations

Higher twist and 
beyond the 
standard model 
interactions

Physics 
uncertainties

Global Analysis 
Framework

Physics Informed Deep Learning

Architecture milestones

Strategic applications of ML techniques in four phases as a framework to pass 
from cross section data to the physical properties of interest.

Step 2Step 1 Step 3 Step 4



Physics Constraints

● Cross section structure built into the 
loss function

● Experimental error bars
● Lorentz invariance - polynomiality 

property
● Positivity constraints
● Forward limit constraints of GPDs
● Dispersion relations with threshold 

effects
● Evolution constraints
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Physics Informed Deep Learning Models

DNN models can spend a lot of computational resources to learn physical laws from data. 
To reduce computation time and improve network performance/generalization, we can 
incorporate those laws into the network so that certain physical properties are 
learned/inherently satisfied in the network’s predictions.

Physics constraints (ex. positivity) may look 
different at each step of the analysis.

Step 2 Step 3
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Phase 1. Deep Learning DVCS Data

Why do we need a deep neural network?
● DNN provide efficient and accurate predictions of the 

cross section while squeezing as much information from 
data as possible.

J. Grigsby, BK, S. Liuti, et. al. PRD 104 (2021)
M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  arXiv:2207.10766 

Current Data



14

Physics constrained cross section predictions

J. Grigsby, BK, S. Liuti, et. al. PRD 104 (2021)
M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  arXiv:2207.10766  

Simple physics constraints 
such as symmetry 
properties of the 
unpolarized cross section 
in the loss function lead to 
increased generalization of 
the DNN predictions.
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Phase 2a. Defining Benchmarks for Information Extraction

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  arXiv:2207.10766 

The idea of benchmarks is to establish transparency in 
the exact methodology of fitting, for reproducibility of 
results, and for compatibility of extracted quantities.

Deeply virtual exclusive processes are a class of 
process of their own, and therefore should be treated as 
such from the initial stages of their analysis. They 
require their own benchmarks!

There are 2 sets of benchmarks that one can establish: 

Physics benchmarks - what physics is entering your fit?
ML / fitting benchmarks - what ML tools are you using, 
hyperparameters, and how are you validating your 
results?
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Phase 2b. VAIM-CFF: A variational autoencoder framework or 
Reframing the Extraction of Compton Form Factors

M. Almaeen, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress)

FemtoNet
Extraction of 8 CFFs from a 
single polarization 
observable treated as an 
“inverse problem” of 
extracting 8 unknowns 
from a single equation.

Quantification of 
information that is 
possible to extract from 
certain experiments. What 
is possible to be learned 
from current data?

Physics 
Information
Input
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VAIM-CFF results

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

The solution set for some of the CFFs seems to 
be bounded (ex. ReH) while others are not 
bounded (ex. ReE tilde). Nevertheless there 
seems to exist a singular solution with an error 
bar for each CFF.

Ex. ReH is interesting, given the choice of (+) or 
(-) it seems to determine that it is always (-).
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VAIM-CFF results

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

Dimensionality reduction techniques such as tSNE reveal structures that indicate the latent 
space is capturing some information that is lost in the encoding process.
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Physics informed VAIM-CFF results

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

How can we include physics information?

Construct envelopes of GPDs created from 
oscillating model parameters and adding in 
noise while ensuring physics constraints are 
still compatible.
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C-VAIM: Studying CFF trends

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

Conditional VAIM (C-VAIM) allows us to study trends in DVCS data by placing a 
kinematic condition on the training of the forward/backward mapper so during training 
it can learn on a conglomerate of DVCS data.



Uncertainty arises in many places when using ML algorithms, it is critical to make sure we understand 
how much we can trust the algorithms predictions. Four factors vital for understanding uncertainty are:

1. Statistical uncertainty from experimental measurements
2. Systematic uncertainties from physics measurements

3. Error in the ML model and its architecture
4. Errors in training procedures
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Uncertainty Quantification

M. Almaeen, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress)

Irreducible

Reducible

We have to make sure we are properly propagating 
irreducible errors through our DNN architectures 
and that we understand the size of our network 
errors. We can randomly sample the error bars of 
the data to create random targets for our neural 
network to train on.
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What’s next …
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Upcoming: Phase 3a. VAIM for GPDs, searching for signatures 
of AM

B.K, P. Velie, E. Yeats, F. Yepez-Lopez, S. Liuti  PRD 105 (2022)

8 parameters per GPD for qi
v, q

i
s, g and an initial scale for 

pQCD evolution.

Parameterization developed theoretically in a spectator 
model

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

Using VAIM, can we determine all possible 
model parameters for a solution set of GPDs 
that can be fit to theory constraints, lattice 
QCD calculations, and experimental data?

What are the various outcomes/signatures of 
angular momentum allowed by the data?
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Conclusions

The extraction of the full x-dependence of GPDs 
requires more than just DVCS data alone.

● Lattice QCD calculation of moments

● Experimental measurements of elastic form 
factors

● Theoretical GPD properties (polynomiality, 
positivity, symmetries, forward limits)

● DVES data from multi-channel global 
analysis

This complicated reconstruction of the information 
from all the information we have on GPDs requires 
new and innovative ML techniques. 

A suite of uncertainty quantification techniques 
must be applied to determine whether the physics 
of interest are contained in the networks 
predictions.

Thank you for your attention!

May require more sophisticated algorithms 
and model development beyond 
standardized techniques.


