3D Imaging of the Nucleon from Lattice QCD

DIS2023: XXX International Workshop on DeepInelastic Scattering and Related Subjects Michigan State University, East Lansing, MI, March 27-31, 2023

YONG ZHAO
MARCH 30, 2023

Outline

- TMDs from experiments
-TMDs from large-momentum effective theory (LaMET)
- Results from lattice QCD

TMDs from global analyses

e.g., semi-inclusive deep inelastic scattering: $l+p \longrightarrow l+h\left(P_{h}\right)+X$

$$
\begin{aligned}
& \frac{d \sigma^{W}}{d x d y d z_{h} d^{2} \mathbf{P}_{h T}} \sim \int d^{2} \mathbf{b}_{T} e^{i \mathbf{b}_{T} \cdot \mathbf{P}_{h T} / z} \\
& \quad \times f_{i / p}\left(x, \mathbf{b}_{T}, Q, Q^{2}\right) D_{h / i}\left(z_{h}, \mathbf{b}_{T}, Q, Q^{2}\right)
\end{aligned}
$$

Kang, Prokudin, Sun and Yuan, PRD 93 (2016)
$f_{i / p}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=f_{i / p}^{\text {pert }}\left(x, b^{*}\left(b_{T}\right), \mu, \zeta\right)$
$\times\left(\frac{\zeta}{Q_{0}^{2}}\right)^{g_{K}\left(b_{T}\right) / 2} \longrightarrow$ Collins-Soper kernel (NP part)
Non-perturbative when $b_{T} \sim 1 / \Lambda_{\mathrm{QCD}}$!

TMDs from global analyses

Unpolarized quark TMD

Scimemi and Vladimirov, JHEP 06 (2020).

Quark Sivers function

Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

TMDs from global analyses

Collins-Soper Kernel $K\left(b_{T}, \mu\right)$ or $\gamma_{\zeta}\left(b_{T}, \mu\right) \quad K\left(b_{T}, \mu\right)=K^{\text {pert }}\left(b_{T}, \mu\right)+g_{K}\left(b_{T}\right)$

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, JHEP 10 (2022).

TMD definition

- Beam function:

Hadronic matrix element

- Soft function :

Vacuum matrix element

$$
f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}} \lim _{\tau \rightarrow 0} \frac{B_{i}}{\sqrt{S^{q}}}
$$

Collins-Soper scale: $\zeta=2\left(x P^{+} e^{-y_{n}}\right)^{2}$
Rapidity divergence regulator

First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

TMD definition

- Beam function:

Hadronic matrix element

- Soft function :

$$
n_{b}^{2}=0
$$

Vacuum matrix element

$$
f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}} \lim _{\tau \rightarrow 0} \frac{B_{i}}{\sqrt{S^{q}}}
$$

Collins-Soper scale: $\zeta=2\left(x P^{+} e^{-y_{n}}\right)^{2}$
Rapidity divergence regulator

First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

Quasi TMD in LaMET

- Beam function in Collins scheme:
- Quasi beam function :

Spacelike but close-to-lightcone $\left(y_{B} \rightarrow-\infty\right)$ Wilson lines, not calculable on the lattice :

Equal-time Wilson lines, directly calculable on the lattice:

Related by Lorentz invariance, equivalent in the large \tilde{P}^{z} or $\left(-y_{B}\right)$ expansion.

Ebert, Schindler, Stewart and YZ, JHEP 04 (2022).

Soft factor

Light-meson form factor:

$$
\begin{aligned}
& F\left(b_{T}, P^{z}\right)=\langle\pi(-P)| j_{1}\left(b_{T}\right) j_{2}(0)|\pi(P)\rangle \\
& \stackrel{P^{z} \gg m_{N}}{=} S_{r}\left(b_{T}, \mu\right) \int d x d x^{\prime} H\left(x, x^{\prime}, \mu\right) \\
& \times \Phi^{\dagger}\left(x, b_{T}, P^{z}, \mu\right) \Phi\left(x^{\prime}, b_{T}, P^{z}, \mu\right)
\end{aligned}
$$

$\Phi\left(x, b_{T}, P^{z}, \mu\right)$: quasi-TMD wave function

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ji and Liu, PRD 105 (2022);
- Deng, Wang and Zeng, JHEP 09 (2022).

Factorization formula for the quasi-TMDs

$$
\begin{aligned}
\frac{\tilde{f}_{i / p}^{\text {naive[s] }}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{\sqrt{S_{r}\left(b_{T}, \mu\right)}} & =C\left(\mu, x \tilde{P}^{z}\right) \operatorname{ex} \\
& \times f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)
\end{aligned}
$$

$$
\exp \left[\frac{1}{2} \gamma_{\zeta}\left(\mu, b_{T}\right) \ln \frac{\left(2 x \tilde{P}^{z}\right)^{2}}{\zeta}\right]
$$

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);

Matching coefficient:

- Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).
- Independent of spin;
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021).
- No quark-gluon or flavor mixing, which makes gluon calculation much easier.

One-loop matching for gluon TMDs:
Schindler, Stewart and YZ, JHEP 08 (2022);
Zhu, Ji, Zhang and Zhao, JHEP 02 (2023).

Factorization formula for the quasi-TMDs

$$
\frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{\sqrt{S_{r}\left(b_{T}, \mu\right)}}=C\left(\mu, x \tilde{P}^{z}\right) \exp \left[\frac{1}{2} \gamma_{\zeta}\left(\mu, b_{T}\right) \ln \frac{\left(2 x \tilde{P}^{z}\right)^{2}}{\zeta}\right]
$$

$$
\times f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)
$$

* Collins-Soper kernel;

$$
\gamma_{\zeta}\left(\mu, b_{T}\right)=\frac{d}{d \ln \tilde{P}^{z}} \ln \frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{C\left(\mu, x \tilde{P}^{z}\right)}
$$

* Flavor separation; $\frac{f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}\right)}{f_{j / p}^{[s]}\left(x, \mathbf{b}_{T}\right)}=\frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}\right)}{\tilde{f}_{j / p}^{\text {naive }\left[s^{\prime}\right]}\left(x, \mathbf{b}_{T}\right)}$
* Spin-dependence, e.g., Sivers function (single-spin asymmetry);
* Full TMD kinematic dependence.
* Twist-3 PDFs from small b_{T} expansion of TMDs. Ji, Liu, Schâerer and Yuan, PRD 103 (2021).
* Higher-twist TMDs. Rodini and Vladimirov, JHEP 08 (2022).

Collins Soper kernel from Lattice QCD

Comparison between lattice results and global fits

MAP22: Bacchetta, Bertone, Bissolotti, et al., JHEP 10 (2022)
SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020)
Pavia19: A. Bacchetta et al., JHEP 07 (2020)
Pavia 17: A. Bacchetta et al., JHEP 06 (2017)
CASCADE: Martinez and Vladimirov, PRD 106 (2022)

Approach	Collaboration
Quasi beam functions	P. Shanahan, M. Wagman and YZ (SWZ21), PRD 104 (2021)
Quasi TMD wavefunctions	Q.-A. Zhang, et al. (LPC20), PRL 125 (2020).
	Y. Li et al. (ETMC/PKU 21), PRL 128 (2022).
	M.-H. Chu et al. (LPC22), PRD 106 (2022)
Moments of quasi TMDs	Schäfer, Vladmirov et al. (SVZES21), JHEP 08 (2021), 2302.06502

Current status for the Collins-Soper kernel

	Lattice setup	Renormalization	Operator mixing	Fourier transform	Matching	x-plateau search
$\begin{aligned} & \text { SWZ20 } \\ & \text { PRD } 102 \text { (2020) } \end{aligned}$ Quenched	$\begin{aligned} a & =0.06 \mathrm{fm}, \\ m_{\pi} & =1.2 \mathrm{GeV}, \\ P_{\text {max }}^{z} & =2.6 \mathrm{GeV} \end{aligned}$	Yes	Yes	Yes	LO	Yes
$\begin{gathered} \text { LPC20 } \\ \text { PRL } 125 \text { (2020) } \end{gathered}$	$\begin{gathered} a=0.10 \mathrm{fm} \\ m_{\pi}=547 \mathrm{MeV} \\ P_{\max }^{z}=2.11 \mathrm{GeV} \end{gathered}$	N/A	No	N/A	LO	N/A
SVZES 21 JHEP08 (2021), 2302.06502	$\begin{gathered} a=0.09 \mathrm{fm} \\ m_{\pi}=422 \mathrm{MeV}, \\ P_{\max }^{+}=2.27 \mathrm{GeV} \end{gathered}$	N/A	No	N/A	NLO	N/A
$\begin{gathered} \text { PKU/ETMC } \\ \mathbf{2 1} \\ \text { PRL } 128 \text { (2022) } \end{gathered}$	$\begin{gathered} a=0.09 \mathrm{fm} \\ m_{\pi}=827 \mathrm{MeV}, \\ P_{\max }^{z}=3.3 \mathrm{GeV} \end{gathered}$	N/A	No	N/A	LO	N/A
$\begin{gathered} \text { SWZ21 } \\ \text { PRD } 106 \text { (2022) } \end{gathered}$	$\begin{gathered} a=0.12 \mathrm{fm} \\ m_{\pi}=580 \mathrm{MeV} \\ P_{\max }^{z}=1.5 \mathrm{GeV} \end{gathered}$	Yes	Yes	Yes	NLO	Yes
$\begin{gathered} \text { LPC22 } \\ \text { PRD } 106 \text { (2022) } \end{gathered}$	$\begin{gathered} a=0.12 \mathrm{fm} \\ m_{\pi}=670 \mathrm{MeV} \\ P_{\max }^{z}=2.58 \mathrm{GeV} \\ \hline \end{gathered}$	Yes	No	Yes	NLO	Yes

Improved calculation with TMD wave function

$\Phi:$ Quasi-TMD wave function

Q.-A. Zhang, et al. (LPC), PRL 125 (2020);
Y. Li et al., PRL 128 (2022);
M.-H. Chu et al. (LPC22), PRD 106 (2022).

$$
\begin{aligned}
a & =0.12 \mathrm{fm}, \\
m_{\pi} & =140 \mathrm{MeV}, \\
P_{\max }^{z} & =2.15 \mathrm{GeV}
\end{aligned}
$$

- Better suppressed power corrections
- More stable Fourier transform
- Renormalization of nonlocal operator
- Systematic treatment of operator mixing using the RI-xMOM scheme
- Green, Jansen and Steffens, PRL 121 (2018) and PRD 101 (2020).
- Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019).
A. Avkhadiev, P. Shanahan, M. Wagman and YZ, work in progress.

Improved calculation with TMD wave function

- Collins-Soper kernel extraction in x-space

$$
\gamma_{\zeta}\left(\mu, b_{T}\right)=\frac{1}{\ln \left(\tilde{P}_{1}^{z} / \tilde{P}_{2}^{z}\right)} \ln \frac{\tilde{\Phi}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}_{1}^{z}\right)}{C\left(\mu, x \tilde{P}_{1}^{z}\right)} / \frac{\tilde{\Phi}_{i / p}^{\text {nive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}_{2}^{z}\right)}{C\left(\mu, x \tilde{P}_{2}^{z}\right)}
$$

Improved calculation with TMD wave function

- Final result in comparison with global fits and perturbative QCD

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020)
Pavia19: A. Bacchetta et al., JHEP 07 (2020)
BLNY: Landry, Brock, Nadolsky and Yuan, PRD 67 (2003)

Lattice result of the reduced soft factor

$$
\begin{gathered}
a=0.10 \mathrm{fm} \\
m_{\pi}=547 \mathrm{MeV} \\
P_{\max }^{z}=2.11 \mathrm{GeV}
\end{gathered}
$$

Q.-A. Zhang, et al. (LPC), PRL 125 (2020).

$$
\begin{gathered}
a=0.09 \mathrm{fm} \\
m_{\pi}=827 \mathrm{MeV} \\
P_{\max }^{z}=3.3 \mathrm{GeV}
\end{gathered}
$$

Y. Li et al., PRL 128 (2022).

Tree-level approximation:

$$
H\left(x, x^{\prime}, \mu\right)=1+\mathcal{O}\left(\alpha_{s}\right) \quad \Rightarrow S_{q}^{r}\left(b_{T}\right)=\frac{F\left(b_{T}, P^{z}\right)}{\left[\tilde{\Phi}\left(b^{z}=0, b_{T}, P^{z}\right)\right]^{2}}
$$

$\left(x, b_{T}\right)$ dependence of the unpolarized proton TMD

J.-C. He, M.-H. Chu, J. Hua et al., (LPC), arXiv: 2211.02340.

$b_{\perp}=0.6 \mathrm{fm}=(0.33 \mathrm{GeV})^{-1}$

\square	This work
\cdots	PV17
\cdots	MAPTMD22
$-\cdots$	SV19
$-\cdots$	BHLSVZ22

$$
\begin{aligned}
a & =0.12 \mathrm{fm} \\
m_{\pi} & =\{310,220\} \mathrm{MeV} \\
P_{\max }^{z} & =2.58 \mathrm{GeV}
\end{aligned}
$$

SV19: Scimemi and Vladimirov, JHEP 06 (2020)
Pavia19: Bacchetta et al., JHEP 07 (2020).
MAPTMD22: Bacchetta et al., JHEP 10 (2022).
BHLSVZ22: Bury et al., JHEP 10 (2022).

Outlook

Observables	Status
Non-perturbative Collins-Soper kernel	$\boldsymbol{\iota}$, keep improving the systematics
Soft factor	$\boldsymbol{\iota}$, to be under systematic control
Info on spin-dependent TMDs (in ratios)	In progress
Proton v.s. pion TMDs, $\left(x, b_{T}\right)$ (in ratios)	In progress
Flavor dependence of TMDs, $\left(x, b_{T}\right)$ (in ratios)	to be studied
TMDs and TMD wave functions, $\left(x, b_{T}\right)$	$\boldsymbol{\iota}$, to be under systematic control
Gluon TMDs $\left(x, b_{T}\right)$	to be studied
Wigner distributions/GTMDs $\left(x, b_{T}\right)$	to be studied

