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Figure 2.16: Semi Inclusive Deep Inelastic Scattering process (SIDIS) in ✏⇤
? center of mass frame. The

plot is from Ref. [214], adapted to the notation used here.

and similarly for the form in Eq. (2.180b).
Finally, we remark that Higgs production at the LHC is dominated by perturbative⇤QCD ⌧

@) ⌧ <� , in which case one can relate the gluon TMD PDFs to collinear PDFs as discussed in
Sec. 2.8, supplemented by resummation of large logarithms as outlined in Chapter 4.
2.11.3 Polarized SIDIS cross section

We now consider Semi-Inclusive Deep-Inelastic Scattering (SIDIS),

✓ (;) + ?(%) ! ✓ (;0) + ⌘(%⌘) + - , (2.185)

where the incoming lepton (an electron, positron or muon) with momentum ; scatters off a
proton with momentum %, both of which can be polarized. One measures both the outgoing
lepton with momentum ;

0 and a hadron of type ⌘ (such as a pion or kaon) and momentum %⌘ ,
but is inclusive over any additional hadronic radiation -.

As in the case of polarized Drell-Yan discussed in Sec. 2.11.1, we are interested in mea-
suring angular correlations in order to extract correlations between the polarization of the
struck quark and the spin of the proton. This requires defining a reference frame in which to
specify angular measurements, which is commonly chosen according to the Trento conven-
tions [19]. In this frame, the spacelike momentum @ defines the I axis, which together with
the lepton momenta defines the (G , I)-plane, with respect to which all angles are defined. This
is illustrated in Fig. 2.16.

We are interested in measuring the momentum component %⌘) and azimuthal angle )⌘ of
the detected hadron in this frame. In addition, there is an azimuthal angle #; characterizing
the overall orientation of the lepton scattering plane around the incoming lepton direction. The
angle is calculated with respect to an arbitrary reference axis, which in the case of transversely
polarized targets is chosen to be the direction of the polarization vector () . In the DIS limit
#; ⇡ )(, where the latter is the azimuthal angle of the spin-vector of the struck hadron. These
observables are also illustrated in Fig. 2.16.

In the limit that & ⌧ <, ,/, the SIDIS process can be described in the single-photon
exchange approximation, and is characterized by 18 independent structure functions [125]. At
leading order in a 1/& expansion, only a subset of 8 structure functions contributes, and the

Kang, Prokudin, Sun and Yuan, PRD 93 (2016)

dσW

dxdydzhd2PhT
∼ ∫ d2bT eibT⋅PhT /z

l + p ⟶ l + h(Ph) + X

× fi/p(x, bT, Q, Q2) Dh/i(zh, bT, Q, Q2)

fi/p(x, bT, μ, ζ) = f pert
i/p (x, b*(bT), μ, ζ)

× ( ζ
Q2

0 )
gK(bT)/2

f NP
i/p (x, bT)

Collins-Soper kernel (NP part)

Intrinsic TMD

Non-perturbative when  !bT ∼ 1/ΛQCDQ0 ∼ 1 GeV
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Figure 5.6: Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band. Plot from Ref. [324].

and extract ⌫8 and ◆8 . This functional form of 5#% was also used in [323]. It has five free
parameters which grant a sufficient flexibility in G-space as needed for the description of
the precise LHC data. An example of distributions in (G , 1))-plane is presented in Fig. 5.6.
Depending on the value of G, the 1)-behavior apparently changes. The authors of Ref. [324]
observe (the same observation was made in Ref. [251]) that the unpolarized TMD FF gains
a large 1

2
)
-term in the nonperturbative part. It could indicate non-trivial consequences of

hadronization physics, or a tension between collinear and TMD distributions.
5.2.2 Drell-Yan and weak gauge boson production

Drell-Yan lepton pair production via either virtual photon or / boson served in prior
chapters of this handbook to set up the basic notation and concepts for TMD factorization.
Factorized in terms of a convolution of two TMD PDFs from each incoming proton at the
small transverse momentum @) as shown in Eq. (2.29a), Drell-Yan production in unpolarized
proton-proton collisions is one of the most important processes for extracting unpolarized
quark TMD PDFs.

There is a tremendous amount of experimental data for Drell-Yan production, ranging from
lower energy Fermilab experimments to the highest energy data at the LHC. The lower-energy
fixed-target Fermilab data include E605 [333] and E288 [334], while the higher-energy Fermilab
data from collider Tevatron include CDF Run I [335] and Run II [336], and D0 Run I [337] and
Run II [338, 339]. LHC data include forward /-production data from the LHCb experiment at
7 [340], 8 [341], and 13 [342] TeV, /-production data from the CMS experiment at 7 [343] and
8 [344] TeV, /-production data differential in rapidity from the ATLAS experiment at 7 [343]
and 8 [345] TeV, and off-peak (low- and high-mass) Drell-Yan data from the ATLAS experiment
at 8 TeV [345]. Finally, there is also preliminary / production data from the STAR experiment
at 510 GeV.

Earlier description of the small-@) Drell-Yan data from both fixed-target and collider Fer-
milab data within the Collins-Soper-Sterman (CSS) framework has been performed by several

TMD handbook 161

Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Unpolarized quark TMD Quark Sivers function

Scimemi and Vladimirov, JHEP 06 (2020). Cammarota, Gamberg, Kang et al. (JAM Collaboration), 
PRD 102 (2020).
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discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.

1. Collins–Soper kernel

It is interesting to study the Collins–Soper kernel [6, 109] that drives the evolution of TMDs in terms of the
rapidity scale ⇣. Recent discussions of this crucial component of the TMD formalism have been presented in
Refs. [110, 111] and estimates based on lattice QCD have been proposed in Refs. [112–114].

The Collins–Soper kernel, as written in Eq. (36), is composed of two parts. The first part can be calculated
perturbatively and is computed at b⇤. The second part, denoted as gK , depends on the implementation of the
b⇤ prescription, cannot be computed in perturbation theory, and is one of the results of our fit. Only the full
Collins–Soper kernel can be compared with other works.

In Fig. 15, we show the Collins–Soper kernel as a function of |bT | at the scale µ = 2 GeV for our present
analysis (MAPTMD22, green band) and for four other analyses in the literature [5, 7, 20, 22]. The solid lines at
low |bT | correspond to the perturbative result. The slight di↵erences between the curves are due to the di↵erent
logarithmic accuracies of the perturbative calculations: the PV17 analysis was performed at NLL, the SV17
analysis at N2LL, the PV19, SV19 and MAPTMD22 at N3LL. The b⇤ prescription modifies the curves starting
from |bT | ⇡ 1 GeV�1. The behavior at high |bT | is driven by gK and is di↵erent for the various analyses.

At low |bT |, in our implementation b⇤ saturates to bmin ⇡ 1.123/Q. This implies that at low |bT | the Collins–
Soper kernel saturates to a finite value, as indicated by the dashed lines. As the scale increases, this modification
occurs at lower and lower values of |bT | and becomes less relevant.
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FIG. 15: The Collins–Soper kernel as a function of |bT | at a scale µ = 2 GeV from the present analysis (MAPTMD22),
compared with the PV17 [5], SV17 [20], PV19 [7], and SV19 [22] analyses. For the MAPTMD22, PV17, and PV19
curves, the uncertainty bands represent the 68% CL. Dashed lines show the e↵ect of including the bmin-prescription (see
text).

2. Average squared transverse momenta

The average squared transverse momenta hk2
?
i(x,Q), hP 2

?
i(z,Q) are calculated with the Bessel weighting

technique suggested in Refs. [115, 116].
In the case of the TMD PDF for a quark q in the proton at µ =

p
⇣ = Q, one has [115, 116]:

hk2
?
iq(x,Q) =

´
d
2k? k2

?
f
q
1 (x,k

2
?
, Q,Q

2)´
d2k? f

q
1 (x,k

2
?
, Q,Q2)

=
2M2

f̂
q (1)
1 (x, |bT |, Q,Q

2)

f̂
q
1 (x, |bT |, Q,Q2)

����
|bT |=0

, (58)

where the Fourier transform f̂
q
1 of the TMD PDF has been defined in Eq. (5) and the first Bessel moment of

the TMD PDF f̂
q (1)
1 is defined as [115]:

f̂
q (1)
1 (x, |bT |, Q,Q

2) =
2⇡

M2

ˆ +1

0
d|k?|

k2
?

|bT |
J1

�
|k?||bT |

�
f
q
1 (x,k

2
?
, Q,Q

2) = � 2

M2

@

@b2
T

f̂
q
1 (x, |bT |, Q,Q

2) .

(59)

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, JHEP 10 (2022).

Collins-Soper Kernel  or K(bT, μ) γζ(bT, μ) K(bT, μ) = Kpert(bT, μ) + gK(bT)



YONG ZHAO, 03/30/2023

• Beam function:

TMD definition

6

• Soft function :
tz

TMD handbook 40

b

t

z

s

b-

T
s

Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

tz

P

nbnb

Hadronic matrix element Vacuum matrix element

fi(x, bT, μ, ζ) = lim
ϵ→0

ZUV lim
τ→0

Bi

Sq

Collins-Soper scale: ζ = 2(xP+e−yn)2 Rapidity divergence regulator

n(2yn)

First principles calculation of TMDs from the above matrix elements 
would greatly complement global analyses!

n2
b = 0
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Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

tz

P

Rapidity divergences

nbnb

Hadronic matrix element Vacuum matrix element

fi(x, bT, μ, ζ) = lim
ϵ→0

ZUV lim
τ→0

Bi

Sq

Collins-Soper scale: ζ = 2(xP+e−yn)2 Rapidity divergence regulator

n(2yn)

First principles calculation of TMDs from the above matrix elements 
would greatly complement global analyses!

n2
b = 0
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Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

q

q

bz

L

nb
Lorentz boost and L → ∞

Equal-time Wilson lines, directly 
calculable on the lattice🙂

nμ
b (yB) ≡ (−e2yB,1,0⊥)

Spacelike but close-to-lightcone 
( ) Wilson lines, not 

calculable on the lattice ☹
yB → − ∞

Lightcone direction

Related by Lorentz invariance, equivalent in the 
large  or  expansion.P̃z (−yB) Ebert, Schindler, Stewart and 

YZ, JHEP 04 (2022). 
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= ⟨π(−P) | j1(bT)j2(0) |π(P)⟩

Pz≫mN= Sr(bT, μ)∫ dxdx′ H(x, x′ , μ)

F(bT, Pz)

× Φ†(x, bT, Pz, μ)Φ(x′ , bT, Pz, μ)

• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020); 
• Ji and Liu, PRD 105 (2022); 
• Deng, Wang and Zeng, JHEP 09 (2022).

Light-meson form factor:

H

CC

H

P ′P

S

t

j1

j2

b⊥

t
z

tz
nb(2yB) n(2yn)

= Sr(bT, μ) e−2(yB−yn)γζ(bT,μ)

: quasi-TMD wave functionΦ(x, bT, Pz, μ)

Reduced soft 
factor

Collins-Soper 
kernel
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Matching coefficient: 
•Independent of spin; 

•No quark-gluon or flavor mixing, which makes gluon calculation 
much easier.

Factorization formula for the quasi-TMDs

9

• Vladimirov and Schäfer, PRD 101 (2020); 
• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020); 
• Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

One-loop matching for gluon TMDs: 
Schindler, Stewart and YZ, JHEP 08 (2022); 
Zhu, Ji, Zhang and Zhao, JHEP 02 (2023).

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019); 
• Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037; 
• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020); 
• Vladimirov and Schäfer, PRD 101 (2020); 
• Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022). 

× f [s]
i/p (x, bT, μ, ζ){1 + 𝒪[ 1

(xP̃zbT)2
,

Λ2
QCD

(xP̃z)2 ]}

f̃ naive[s]
i/p (x, bT, μ, P̃z)

Sr(bT, μ)
= C(μ, xP̃z) exp[ 1

2
γζ(μ, bT)ln

(2xP̃z)2

ζ ]
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✴Collins-Soper kernel; 

✴Flavor separation; 

✴Spin-dependence, e.g., Sivers function (single-spin asymmetry); 

✴Full TMD kinematic dependence. 

✴Twist-3 PDFs from small bT expansion of TMDs. 

✴Higher-twist TMDs.

Factorization formula for the quasi-TMDs
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× f [s]
i/p (x, bT, μ, ζ){1 + 𝒪[ 1

(xP̃zbT)2
,

Λ2
QCD

(xP̃z)2 ]}

f̃ naive[s]
i/p (x, bT, μ, P̃z)

Sr(bT, μ)
= C(μ, xP̃z) exp[ 1

2
γζ(μ, bT)ln

(2xP̃z)2

ζ ]

γζ(μ, bT) =
d

d ln P̃z
ln

f̃ naive[s]
i/p (x, bT, μ, P̃z)

C(μ, xP̃z)
f [s]
i/p(x, bT)

f [s′ ]
j/p (x, bT)

=
f̃ naive[s]

i/p (x, bT)

f̃ naive[s′ ]
j/p (x, bT)

Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

Rodini and Vladimirov, JHEP 08 (2022).
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Comparison between lattice results and global fits

Collins Soper kernel from Lattice QCD
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FIG. 2. Comparison of CS kernels extracted from differ-

ent combinations of the pseudo-data. The top plot shows all

possible (twelve) combinations of pseudo-data with different

kinematics, listed in the table I. The bottom plot show ex-

tractions made with different input collinear PDFs. The solid

lines are the central values. The shaded areas are the statis-

tical uncertainty. The oscillations at b ⇠ 4� 6GeV
�1

are due

to the finite bin size in the qT -space. The gray dashed line in

the lower plot shows the effect of incomplete cancellation of

parton’s momentum if PDFs in the comparing cross-section

are different (here, CT18 vs. CASCADE).

tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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Current status for the Collins-Soper kernel
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Lattice setup Renormalization Operator 
mixing

Fourier 
transform

Matching x-plateau 
search

SWZ20 
PRD 102 (2020)  

Quenched
Yes Yes Yes LO Yes

LPC20 
PRL 125 (2020) N/A No N/A LO N/A

SVZES 21 
JHEP08 (2021), 

2302.06502
N/A No N/A NLO N/A

PKU/ETMC 
21 

PRL 128 (2022)
N/A No N/A LO N/A

SWZ21 
PRD 106 (2022) Yes Yes Yes NLO Yes

LPC22 
PRD 106 (2022) Yes No Yes NLO Yes

a = 0.12 fm,
mπ = 580 MeV,
Pz

max = 1.5 GeV

a = 0.09 fm,
mπ = 827 MeV,
Pz

max = 3.3 GeV

a = 0.09 fm,
mπ = 422 MeV,
P+

max = 2.27 GeV

a = 0.10 fm,
mπ = 547 MeV,
Pz

max = 2.11 GeV

a = 0.06 fm,
mπ = 1.2 GeV,
Pz

max = 2.6 GeV

a = 0.12 fm,

Pz
max = 2.58 GeV
mπ = 670 MeV,
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• Physical pion mass


• Better suppressed power corrections


• More stable Fourier transform


• Renormalization of nonlocal operator 

• Systematic treatment of operator mixing 
using the RI-xMOM scheme

Improved calculation with TMD wave function 
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Improving Lattice QCD Calculation of the Collins-Soper Kernel

The Collins-Soper (CS) Kernel CS Kernel with Lattice QCD Projected Improvements

Artur Avkhadiev (virtual presenter),¹ Phiala Shanahan,¹ Michael Wagman,² and Yong Zhao³
¹Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

²Fermi National Accelerator Laboratory, Batavia, IL, USA
³Physics Division, Argonne National Laboratory, Lemont, IL, USA

Observable Collaboration LQCD Setup Matching Fourier 
Transform

Operator 
Mixing

Beam
Functions

SWZ 20
PRD 102 (2020) LO Yes ✔

SWZ 21
PRD 104 (2021) NLO Yes ✔

TMD WFs

LPC 20
PRL 125 (2020) LO N/A ✔

ETMC/PKU 21
PRL 128 (2022) LO N/A ✗

LPC 22
2204.00200 NLO Yes ✗

This work
(in progress) NLO Yes ✔

Mellin 
Moments

SVZES 21
JHEP 08 (2021) NLO N/A ✗

quenched

Using Large-Momentum Effective Theory (LaMET), 
the CS kernel may be computed with Lattice QCD via 
space-like matrix elements of staple-shaped 
operators:

Collins-Soper (CS) Kernel
(independent of external state h).

Fourier conjugate to parton’s transverse momentum.

Fourier-transformed TMD for parton i in hadron h.

Robust Non-Local Operator Renormalization

Renormalization of rapidity divergences in TMDs leads to the Collins-Soper 
scale      and the evolution equation with a Collins-Soper (CS) Kernel:

Physical Pion Mass and 
Reduced Systematics from the Fourier Transform

1. Renormalization;                   
2.                 extrapolation &

asymmetry corrections;     
3. Fourier Transform;                  
4. Perturbative Matching.                                 

Even if      is 
perturbative,                
is non-perturbative 
at large     .

Non-perturbative 
modeling in global 
fits is significant 
for 

Non-perturbative 
CS kernel is a 
possible target for 
lattice QCD.

One possible observable is a quasi-TMD wavefunction 
(WF) with                            from two-point correlation 
functions:

LQCD calculations are broadly consistent – but different treatments of 
matching, Fourier transform and renormalization lead to significant 
systematic effects, and power corrections can be sensitive to valence 
quark masses.

With bare matrix elements computed, the ratio yields the CS kernel after:

Transverse motion of partons in hadrons 
gives rise to Transverse Momentum- 
dependent Distributions (TMDs).
TMDs appear in factorized cross-sections 
of processes sensitive to transverse 
momenta of partons – e.g. in Drell-Yan:

Greater computational efficiency also allows to reduce systematic 
uncertainties from the Fourier transform by increasing data frequency and 
range in            (right panel) – which requires a greater number of and 
longer staple configurations, respectively.

Recent formal and code developments increase computational efficiency, 
which enables calculations at  ~ physical           to remove partial 
quenching and suppress power corrections.

Figure from LPC 22, 2204.00200  [axes and legend labels modified]

Figures from Iain Stewart’s plenary talk at
Lattice 2021 [modified for clarity]

¹ Green, Jansen, and Steffens, PRL 121 (2018) and PRD 101(2020).
² Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019) and PRD 96 (2017).

With the auxiliary-field approach, the renormalization of extended 
staple-shaped operators is simplified to that of point-like objects. In the 
RIx-MOM scheme¹ (right panel, log scale), compared to the usual RI’-MOM 
scheme (left panel, linear scale), mixing effects are both reduced and in 
better agreement with one-loop lattice perturbation theory² (white circles).

Figure from Shanahan, Wagman, and Zhao, 
PRD 101 (2020) 

Preliminary figure from this work 
(different ensemble and renormalization scale)

Figure from LPC 22, 2204.00200 
[modified for clarity]

Preliminary figure from this work 
(different normalization)

quenched

: Quasi-TMD wave functionΦ

Φ̃ = ⟨0 | |π(P)⟩

!4

LQCD Setup

Independent of hadron state, choice of momenta, choice of 

…up to power corrections:             ,                       ,          
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Exploit independence, 
calculate for valence pion 
with 
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A. Avkhadiev, P. Shanahan, M. Wagman and YZ, 
work in progress.
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FIG. 2. MS-renormalised quasi-wavefunction ratios with for various parameter choices.

III. CURRENT PROPOSAL

With the proposed continuation, we plan to complete the extension of our work detailed in the

previous section to three ensembles to enable a continuum extrapolation (and through this, a fit

to determine the e↵ect of power-corrections on our single-ensemble results). The three ensembles

are produced by the MILC collaboration, with 2 + 1 + 1 dynamical quark flavors, generated

with the one-loop Symanzik improved gauge action and the highly improved staggered quark

action. Masses of staggered sea quarks in this ensemble are tuned to approximately reproduce the

physical pion mass. In addition to our results described in the previous section on an ensemble

with V = L
3
⇥ T = (48a)3 ⇥ 64a, where a = 0.12 fm, and results which are in production on local

resources on an ensemble with V = L
3
⇥ T = (32a)3 ⇥ 48a, where a = 0.18 fm, we are currently

producing data on the largest ensemble, with V = L
3
⇥ T = (64a)3 ⇥ 96a, where a = 0.09 fm.

We have already completed running of the same production for several momenta (namely P
z = 0,

P
z = 4(2⇡/(La)), P z = 6(2⇡/(La)), P z = 8(2⇡/(La))), and with this proposal are targeting

production on P
z = 10(2⇡/(La)) to complete our calculation.

Just as in our previous allocation, to simplify operator renormalization and avoid the need to

deal with the complications of the RI/MOM scheme for nonlocal operators, staples with fixed

` 2 {12, 17} are used for this momentum for all choices of bz for a given bT , which corresponds to a

b
z-dependent choice of ⌘. Combined with our existing results, this will enable a continuum, infinite-

volume extrapolation of these results and provide the first systematically controlled prediction of

a = 0.12 fm,
mπ = 140 MeV,

Pz
max = 2.15 GeV
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• Collins-Soper kernel extraction in x-space

Improved calculation with TMD wave function 
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γζ(μ, bT) =
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ln(P̃z
1/P̃z

2)
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FIG. 3. Collins-Soper kernel estimators after matching in x space, for various parameter choices.
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• Final result in comparison with global fits and perturbative QCD

Improved calculation with TMD wave function 
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8

FIG. 4. Collins-Soper kernel after matching in bT space with NLO (left) vs LO (right) matching from

quasi to light-cone distributions.
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FIG. 5. Collins-Soper kernel after matching in bT space compared to phenomenological determinations.

the Collins-Soper kernel from QCD.

We have obtained preliminary results for quasi TMDWFs on our target ensembles with m⇡ ⇠

140 MeV on a small number of gauge field configurations in order to estimate the computational

resources required to achieve our target precision of ⇠20-30% for the Collins-Soper kernel for bT
values in the range of 0.3–0.5 fm. Based on

p
N statistical scaling of the uncertainties of the

preliminary data, we anticipate requiring a di↵erent number of measurements at each P
z value;

this is a↵ected not only by the precision of the two-point functions with di↵ernt momenta, but

by the extension of the staple-shaped operators used at each momentum (as specified above). For

each choice of m⇡ and P
z, the estimated Ncfg required to determine the Collins-Soper kernel at

a nonperturbative scale bT = 0.36 fm with a precision ranging from 10% at P
z = 0.86 GeV to

20% at P z = 2.2 GeV is determined and used to set the resource requirements for our proposed

calculation, which are summarized in Table I. The multigrid algorithm used to compute quark

propagators with m⇡ ⇠ 140 MeV is most e�cient when several sources are used per configuration

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 
Pavia19: A. Bacchetta et al., JHEP 07 (2020) 
BLNY: Landry, Brock, Nadolsky and Yuan, PRD 67 (2003)
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4

TMDWF,

C2(b?, P
z; pz, `, t) =

1

L3
p
ZE(2`, b?)

X

x

Trei
~P ·~x

⇥ hS
†
w(~x+~b, t, 0;�~p)W(~b, `)�5��Sw(~x, t, 0;P

z
� ~p)i

=
Aw(pz)Ap

2E
e
�Et

�`(0, b?, P
z
, `)(1 + c0e

��Et), (15)

where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.

5

Figure 2. The lattice results of S(b⊥) for various momenta,
together with the one-loop perturbative result S1−loop

MS
and its

variant S′1−loop
MS

with ↵s including up to 4 loops. The scale µ

in Eq. (17) is set as µ = 2 GeV.

cancelling the dominant higher-twist e↵ects, the results
become much more consistent. The residual deviations
serve as measure of important systematic e↵ects to be
controlled in future studies.

Results of the soft function – After checking the
consistency among the various improved pion matrix ele-
ments, we use the choice of 1

2
(F�5�1 + F�1) as an example

to present the results of S(b⊥) for various momenta P z

and pion masses m⇡
vi.

In Fig. 2, S(b⊥, P z
) is shown together with the one-

loop perturbative curve [35],

S
MS
(b⊥, µ) = 1 − ↵sCF

⇡
ln

µ2b2⊥
4e−2�E

+O(↵2

s), (17)

where one-loop and four-loop values of ↵s are used at the
physically most relevant scale of S(b⊥), i.e. 1�b⊥. The
scale µ is set as µ = 2 GeV. We note that the lattice re-
sults agree qualitatively with the perturbative function
at around b⊥ ∼ 0.2 fm, particularly at the largest boost
and when the higher-order e↵ects are partially included
via ↵s. At larger b⊥, non-perturbative features start to
set in and the decay of S(b⊥) is slower than the pertur-
bative prediction. It is also noteworthy that the conver-
gence of the lattice results in P z clearly increases with
b⊥ – the results from the two largest P z are compatible
for b⊥ � 0.2 fm, while smaller transverse separations will
need yet larger boosts to establish convergence.

In Fig. 3, we examine the pion mass dependence of
the soft function. Although S(b⊥) is extracted from pion
matrix elements which depend on the detailed process
of ⇡(P z

) → ⇡(−P z
), the factorization allows us to can-

cel this process dependence. Performing the calculation
at four pion masses, we find that the lattice results are
generally consistent within statistical errors, although a
small systematic increase is found when decreasing m⇡.
This observation supports the statement from the factor-
ization [17] that the soft function does not depend on the

Figure 3. The intrinsic soft function S(b⊥) for the pion masses
ranging from 827 MeV to 350 MeV. Here, we show results
calculated at the momentum P

z = 5 2⇡
L

as an example.

detailed hadronic information from the initial/final state.
Results for the Collins-Soper kernel – The

Collins-Soper kernel K(b⊥, µ) governs the rapidity evo-
lution of the TMDPFs. In LaMET, the quasi-TMDPDF
is factorized into the light-cone TMDPDF and a
K(b⊥, µ) ln(⇣z�⇣) factor, where ⇣z = 2(xP z

)
2, with P z

playing the role of the rapidity, while ⇣ is the light-cone
counterpart of ⇣z [36]. Thus, by taking the ratio of quasi-
TMDPDFs at di↵erent values of P z, one can extract
K(b⊥, µ). This ratio can also be expressed in terms of
the quasi-TMDWFs [18] as

K(b⊥, µ) = lim
l→∞

1

ln(P z
1
�P z

2
)
ln �

�(b⊥, l, P z
1
)�E1

�(b⊥, l, P z
2
)�E2

�

=
1

ln(P z
1
�P z

2
)
ln

������������

Cwf
��
(b⊥, P z

1
)

Cwf
��
(b⊥, P z

2
)

Cwf
��
(0, P z

2
)

Cwf
��
(0, P z

1
)

������������

. (18)

Figure 4. The lattice results for the Collins-Soper kernel
K(b⊥, µ) from various calculations, described by the color of
yellow [20], blue [19], green [18] and red. The results from
a same calculation are shifted horizontally to make an easier
comparison.

In Fig. 4, the lattice results of K(b⊥, µ) from this work

Y. Li et al., PRL 128 (2022).

a = 0.10 fm,
mπ = 547 MeV,
Pz

max = 2.11 GeV

a = 0.09 fm,
mπ = 827 MeV,
Pz

max = 3.3 GeV

Tree-level approximation:

H(x, x′ , μ) = 1 + 𝒪(αs) ⇒ Sr
q(bT) =

F(bT, Pz)
[Φ̃(bz = 0,bT, Pz)]2
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FIG. 5. Our final results for isovector unpolarized TMDPDFs xf(x, b?, µ, ⇣) at renormalization scale µ = 2 GeV and rapidity
scale

p
⇣ = 2 GeV, extrapolated to physical pion mass 135 MeV and infinite momentum limit P z ! 1, compared with PV17

[6], MAPTMD22 [9], SV19 [7] and BHLSVZ22 [8] global fits (slashed bands). The colored bands denote our results with both
statistical and systematic uncertainties, the shaded grey regions imply the endpoint regions where LaMET predictions are not
reliable.
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SUPPLEMENTAL MATERIALS

Renormalization

In order to renormalize the bare quasi-TMD matrix
elements, the square root of Wilson loop

p
ZE and loga-

rithmic divergence factor ZO need to be computed.
The Wilson loop ZE(r = 2L+z, b?, a) is defined as the

vacuum expectation of a rectangular shaped space-like
gauge links with size r⇥b?. It is introduced to eliminate
the linear divergence form as e��m̄r, which comes from
the self-energy corrections of the gauge link [28, 34], as
well as the pinch-pole singularity, which comes from the
heavy quark e↵ective potential term e�V (b?)L from the
interactions between the two Wilson lines along the z
direction in the staple link [20]. In practice, the signal
to noise ratio of ZE(r, b?, a) grows fast and is hardly
available at large r and/or b?. To address this, we fit the
e↵ective energies of Wilson loop, which denote the QCD
static potentials, and then extrapolate them at large r
and/or b? area, as in Ref. [27]. Numerical results of
Wilson loop are shown in the upper panel of Fig. 6.

Besides, the logarithmic divergences factor ZO can be
extracted from the zero-momentum bare matrix elements
h̃0
� (z, b?, 0, a, L). In order to keep the renormalized ma-

trix elements consistent with perturbation theory, ZO

should be determined with the condition:

ZO(1/a, µ,�) = lim
L!1

h̃0
� (z, b?, 0, a, L)p

ZE (2L+ z, b?, a)h̃MS
� (z, b?, µ)

(12)

in a specific window where z ⌧ ⇤�1
QCD so that the

perturbation theory works well. Here the perturbation
results have been evolved from the intrinsic physical
scale 2e��E/

p
z2 + b2? to MS scale µ via renormalization

group equation [44]. To preserve a good convergence of
the perturbation theory before and after RG evolution,
we choose the region where b? = a, z = 0 or a. More
discussions about RG evolution can be found in the fol-
lowing section. The numerical value for ZO in this work
is taken as 1.0622(87), of which the uncertainty is negli-
gible compared with other systematic uncertainties.
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a = 0.12 fm,
mπ = {310, 220} MeV,
Pz

max = 2.58 GeV
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Observables Status

Non-perturbative Collins-Soper kernel
 ✔, keep improving the systematics

Soft factor ✔, to be under systematic control

Info on spin-dependent TMDs (in ratios)
 In progress

Proton v.s. pion TMDs,             (in ratios)
 In progress

Flavor dependence of TMDs,          (in ratios) 


  
to be studied

TMDs and TMD wave functions,           ✔, to be under systematic control

Gluon TMDs
 to be studied

Wigner distributions/GTMDs to be studied

(x, bT)

(x, bT)

(x, bT)

(x, bT)

(x, bT)


