Frame-independent methods to access GPDs from lattice QCD

Martha Constantinou

In collaboration with:

S. Bhattacharya, K. Cichy, J. Dodson, X. Gao, A. Metz, J. Miller, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao

DIS 2023

March 28, 2023

- ★ Crucial in understanding hadron tomography
- ★ Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

- ★ Crucial in understanding hadron tomography
- ★ Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

- ★ Prescription of how to access GPDs from first principles (lattice QCD):
 - with realistic computational resources
 - for a broad range of their variables
 - at fast convergence to light-cone GPDs

- ★ Crucial in understanding hadron tomography
- ★ Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

- ★ Prescription of how to access GPDs from first principle
 - with realistic computational resources
 - for a broad range of their variables
 - at fast convergence to light-cone GPDs

- ★ Crucial in understanding hadron tomography
- ★ Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

- ★ Prescription of how to access GPDs from first principles (lattice QCD):
 - with realistic computational resources
 - for a broad range of their variables
 - at fast convergence to light-cone GPDs

- ★ Crucial in understanding hadron tomography
- ★ Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

- ★ Prescription of how to access GPDs from first principles (lattice QCD):
 - with realistic computational resources
 - for a broad range of their variables
 - at fast convergence to light-cone GPDs

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya[®],^{1,*} Krzysztof Cichy,² Martha Constantinou[®],^{3,†} Jack Dodson,³ Xiang Gao,⁴ Andreas Metz,³ Swagato Mukherjee[®],¹ Aurora Scapellato,³ Fernanda Steffens,⁵ and Yong Zhao⁴

Generalized Parton Distributions

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

Generalized Parton Distributions

x < 0.1 $x \sim 0.3$ $x \sim 0.8$ [H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

★ GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathcal{H} = \int_{-1}^{+1} \frac{H(x, \xi, t)}{x \xi + i\epsilon} dx$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Generalized Parton Distributions

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

- ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: $\mathcal{H} = \int_{-1}^{+1} \frac{H(x, \xi, t)}{x \xi + i\epsilon} dx$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
 - independent measurements to disentangle GPDs
 - GPDs phenomenology more complicated than PDFs (multi-dimensionality)
 - and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

GPDs

Through non-local matrix elements of fast-moving hadrons

- ★ GPDs: off-forward matrix elements of non-local light-cone operators
- ★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x, t, \xi, P_3, \mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) | \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z, 0) \Psi(0) | N(P_i) \right\rangle_{\mu} \qquad \Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = Q_3/(2P_3)$$

- ★ GPDs: off-forward matrix elements of non-local light-cone operators
- ★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x, t, \xi, P_3, \mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) | \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z, 0) \Psi(0) | N(P_i) \right\rangle_{\mu} \qquad \Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = Q_3/(2P_3)$$

 \star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{\mathrm{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{\mathrm{Q}(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{\mathrm{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{\mathrm{Q}(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

- ★ GPDs: off-forward matrix elements of non-local light-cone operators
- ★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x, t, \xi, P_3, \mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) | \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z, 0) \Psi(0) | N(P_i) \right\rangle_{\mu} \qquad \Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = Q_3/(2P_3)$$

 \star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda')\left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda')\left[\gamma^3H_{\mathrm{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M}E_{\mathrm{Q}(0)}(x,\xi,t;P^3)\right]u(p,\lambda)$$
finite mixing with scalar [Constantinou & Panagopoulos (2017)]

- ★ GPDs: off-forward matrix elements of non-local light-cone operators
- ★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x, t, \xi, P_3, \mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) | \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z, 0) \Psi(0) | N(P_i) \right\rangle_{\mu} \qquad \Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = Q_3/(2P_3)$$

 \star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda')\left[\gamma^0H_{\mathrm{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{\mathrm{Q}(0)}(x,\xi,t;P^3)\right]u(p,\lambda)$$
reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda')\left[\gamma^3H_{\mathrm{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M}E_{\mathrm{Q}(0)}(x,\xi,t;P^3)\right]u(p,\lambda)$$
 finite mixing with scalar [Constantinou & Panagopoulos (2017)]

- ★ Lorentz non-invariant parametrization (typically symmetric frame to extract the "standard" GPDs)
- **Symmetric frame** ($\overrightarrow{p}_f^s = \overrightarrow{P} + \overrightarrow{Q}/2$, $\overrightarrow{p}_i^s = \overrightarrow{P} \overrightarrow{Q}/2$) requires separate calculations at each t

- GPDs: off-forward matrix elements of non-local light-cone operators
- Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x, t, \xi, P_3, \mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \left\langle N(P_f) | \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z, 0) \Psi(0) | N(P_i) \right\rangle_{\mu} \qquad \Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = Q_3/(2P_3)$$

 \star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda')\left[\gamma^0H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^3)\right]u(p,\lambda)$$
reduction of positive forms in figure (Badyushkin, PLB 767, 3)

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0}\bar{u}(p',\lambda')\left[\gamma^3H_{\mathrm{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M}E_{\mathrm{Q}(0)}(x,\xi,t;P^3)\right]u(p,\lambda)$$
finite mixing with scalar [Constanting & Panagopoulos (2017)]

- ★ Lorentz non-invariant parametrization (typically symmetric frame to extract the "standard" GPDs)
- **Symmetric frame** ($\overrightarrow{p}_f^s = \overrightarrow{P} + \overrightarrow{Q}/2, \overrightarrow{p}_i^s = \overrightarrow{P} \overrightarrow{Q}/2$) requires separate calculations at each t

Light-cone GPDs using lattice correlators in non-symmetric frames

Theoretical setup

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Applicable to any kinematic frame and A_i have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

Theoretical setup

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- ullet Applicable to any kinematic frame and A_i have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi *H*, *E* may be redefined (Lorentz covariant):

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 \qquad E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot z A_6 + 2\Delta_{s/a} \cdot z A_8$$

Theoretical setup

★ Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- ullet Applicable to any kinematic frame and A_i have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi *H*, *E* may be redefined (Lorentz covariant):

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_3 \qquad E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_3 + 2A_5 + 2P_{avg, s/a} \cdot z A_6 + 2\Delta_{s/a} \cdot z A_8$$

Proof-of-concept calculation (zero quasi-skewness):

- symmetric frame:
$$\overrightarrow{p}_f^s = \overrightarrow{P} + \frac{\overrightarrow{Q}}{2}$$
, $\overrightarrow{p}_i^s = \overrightarrow{P} - \frac{\overrightarrow{Q}}{2}$ $t^s = -\overrightarrow{Q}^2$

- asymmetric frame:
$$\overrightarrow{p}_f^{\,a} = \overrightarrow{P}$$
, $\overrightarrow{p}_i^{\,a} = \overrightarrow{P} - \overrightarrow{Q}$ $t^a = -\overrightarrow{Q}^2 + (E_f - E_i)^2$

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

Pion mass: 260 MeV

Lattice spacing: 0.093 fm

Volume: 32³ x 64

Spatial extent: 3 fm

- **★** Calculation:
 - isovector combination
 - zero skewness
 - T_{sink}=1 fm

frame	P_3 [GeV]	$\mathbf{Q}\left[rac{2\pi}{L} ight]$	$-t \; [\mathrm{GeV^2}]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.64	0	8	269	8	17216

- **★** Computational cost:
 - symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each t)

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

260 MeV Pion mass: Lattice spacing: 0.093 fm

 $32^3 \times 64$

Spatial extent: 3 fm

Calculation:

- isovector combination
- zero skewness
- T_{sink}=1 fm

$N(\overrightarrow{P}_f,0)$	$N(\overrightarrow{P}_i, t_s)$				
P_3 [GeV]	$\mathbf{Q} \; [rac{2\pi}{L}]$	$-t \; [\mathrm{GeV^2}]$	ξ	$N_{ m ME} \ N_{ m confs}$	$N_{ m sr}$

frame	P_3 [GeV]	$\mathbf{Q} \; \left[rac{2\pi}{L} ight]$	$-t \ [\mathrm{GeV^2}]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216

Small difference:

$$t^{s} = -\overrightarrow{Q}^{2}$$

$$t^{s} = -\overrightarrow{Q}^{2} \qquad t^{a} = -\overrightarrow{Q}^{2} + (E_{f} - E_{i})^{2}$$

$$A(-0.64 \text{GeV}^2) \sim A(-0.69 \text{GeV}^2)$$

- Computational cost:
 - symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each t)

 \star Eight independent matrix elements needed to disentangle the A_i

asymmetric frame

 \star Eight independent matrix elements needed to disentangle the A_i

 \star Eight independent matrix elements needed to disentangle the A_i

 \star Eight independent matrix elements needed to disentangle the A_i

 \star Eight independent matrix elements needed to disentangle the A_i

Noisy ME lead to challenges in extracting ${\cal A}_i$ of sub-leading magnitude

How do the A_i compare between frames?

How do the A_i compare between frames?

- \star A_1, A_5 dominant contributions
- \star Full agreement in two frames for both Re and Im parts of A_1, A_5
- \star Remaining A_i suppressed (at least for this kinematic setup and $\xi=0$)

quasi-GPDs in terms of A_i

- \bigstar The mapping of A_i to the quasi-GPDs is not unique
- ★ Construction of a Lorentz invariant definition may be beneficial

$$(\xi = 0)$$
 $\Pi_H^{\text{impr}} = A_1$
$$\Pi_E^{\text{impr}} = -A_1 + 2A_5 + 2zP_3A_6$$

★ All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

quasi-GPDs in terms of A_i

- \star The mapping of A_i to the quasi-GPDs is not unique
- ★ Construction of a Lorentz invariant definition may be beneficial

$$\Pi_H^{\text{impr}} = A_1$$

$$\Pi_E^{\text{impr}} = -A_1 + 2A_5 + 2zP_3A_6$$

★ All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

Agreement between frames for both quasi-GPDs (by definition)

Beyond exploration

- \bigstar 11 values of -t (3 in symm. frame and 8 in asymm. frame)
- \star Separate calculation for each -t value in symmetric frame
- ★ Two groups of -t value in asymmetric frame: $\overrightarrow{Q} = (Q_x, 0, 0), (Q_x, Q_y, 0)$

frame	P_3 [GeV]	$oldsymbol{\Delta}\left[rac{2\pi}{L} ight]$	$-t [\mathrm{GeV}^2]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	±1.25	(0,0,0)	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2, 0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),\ (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3, 0), (\pm 3, \pm 1, 0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

Momentum transfer range is very optimistic

(some values have enhanced systematic uncertainties)

Unpolarized quasi-GPDs

asymmetric frame

- ★ Impressive quality of signal quality
- \star Behavior with increasing -t as "expected" qualitatively

Unpolarized light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level
- +/-x correspond to quark and anti-quark region
- * Anti-quark region susceptible to systematic uncertainties.

Helicity quasi-GPDs

★ Lorentz-invariant decomposition applicable to helicity case

At $\xi = 0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)

Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- At $\xi = 0$ only H is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)

asymmetric frame

Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- At $\xi = 0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)

asymmetric frame

- \star All values of t obtained at the cost of one
- ★ Preliminary analysis very encouraging!

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography

 \star Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

 \star Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Summary

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- ★ New proposal for Lorentz invariant decomposition has great advantages:
 - significant reduction of computational cost
 - access to a broad range of $\,t\,$ and $\,\xi\,$
- ★ Future calculations have the potential to transform the field of GPDs
- ★ Mellin moments can be extracted utilizing quasi-GPDs data

Xiang Gao, Tue 11:50am

* Synergy with phenomenology is an exciting prospect!

Summary

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- ★ New proposal for Lorentz invariant decomposition has great advantages:
 - significant reduction of computational cost
 - access to a broad range of $\,t\,$ and $\,\xi\,$
- ★ Future calculations have the potential to transform the field of GPDs
- ★ Mellin moments can be extracted utilizing quasi-GPDs data

Xiang Gao, Tue 11:50am

★ Synergy with phenomenology is an exciting prospect!

Thank you

DOE Early Career Award (NP) Grant No. DE-SC0020405

