Frame-independent methods to access GPDs from lattice QCD

Martha Constantinou

Temple University

In collaboration with:
S. Bhattacharya, K. Cichy, J. Dodson, X. Gao, A. Metz, J. Miller, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao

Motivation for GPDs studies

\star Crucial in understanding hadron tomography

* Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

Motivation for GPDs studies

\star Crucial in understanding hadron tomography

* Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

* Prescription of how to access GPDs from first principles (lattice QCD):
- with realistic computational resources
- for a broad range of their variables
- at fast convergence to light-cone GPDs

Motivation for GPDs studies

\star Crucial in understanding hadron tomography
丸 Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

\star Prescription of how to access GPDs from first principle

- with realistic computational resources
- for a broad range of their variables
- at fast convergence to light-cone GPDs

Motivation for GPDs studies

\star Crucial in understanding hadron tomography

* Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

* Prescription of how to access GPDs from first principles (lattice QCD):
- with realistic computational resources
- for a broad range of their variables
- at fast convergence to light-cone GPDs

Motivation for GPDs studies

\star Crucial in understanding hadron tomography

* Correlation between transverse position and longitudinal momentum of the quarks in the hadron and its mechanical properties

This talk:

* Prescription of how to access GPDs from first principles (lattice QCD):
- with realistic computational resources
- for a broad range of their variables
- at fast convergence to light-cone GPDs

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya $\odot,{ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou ${ }^{(}{ }^{3, \dagger}{ }^{\dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee $\odot,{ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

Generalized Parton Distributions

$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

Generalized Parton Distributions

$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

* GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Generalized Parton Distributions

$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
\star GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

GPDs

Through non-local matrix elements of fast-moving hadrons

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators
Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \Delta \quad=P_{f}-P_{i}, ~ \begin{array}{rlr}
\\
& =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{array}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\begin{aligned}
& \tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \\
& \Delta=P_{f}-P_{i} \\
& t=\Delta^{2}=-Q^{2}
\end{aligned}
$$

Potential parametrization $\left(\gamma^{+}\right.$inspired)
$F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)$
$F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

太 Off-forward correlators with nonlocal (equal-time) operators [Ji, pRL 110 (2013) 262002]

$$
\begin{aligned}
& \tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \\
& \begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
\end{aligned}
$$

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power
corrections in fwd limit
[Radyushkin, PLB 767, 314, 2017]

finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\begin{array}{rlrl}
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} & \Delta & =P_{f}-P_{i} \\
& t & =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{array}
$$

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda),{ }^{\prime}\right)}
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda\right)\left[\gamma^{3} H_{\mathrm{Q} 0(}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$\longrightarrow \quad$ finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

* Lorentz non-invariant parametrization (typically symmetric frame to extract the "standard" GPDs)
\star Symmetric frame ($\vec{p}_{f}^{s}=\vec{P}+\vec{Q} / 2, \vec{p}_{i}^{s}=\vec{P}-\vec{Q} / 2$) requires separate calculations at each t

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\begin{aligned}
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{V}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} & \Delta & =P_{f}-P_{i} \\
& t & =\Delta^{2}=-Q^{2} \\
& \xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

Potential parametrization $\left(\gamma^{+}\right.$inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
$F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)$

finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

* Lorentz non-invariant parametrization (typically symmetric frame to extract the "standard" GPDs)
\star Symmetric frame ($\vec{p}_{f}^{s}=\vec{P}+\vec{Q} / 2, \vec{p}_{i}^{s}=\vec{P}-\vec{Q} / 2$) requires separate calculations at each t

Light-cone GPDs using lattice correlators in non-symmetric frames

Theoretical setup

Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and A_{i} have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):

Theoretical setup

Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and A_{i} have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):
$H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, / / a} \cdot z} A_{3} \quad E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg,s/a }} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}$

Theoretical setup

Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and A_{i} have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant):
$H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3} \quad E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}+2 A_{5}+2 P_{a v g, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}$

Proof-of-concept calculation (zero quasi-skewness):

- symmetric frame:

$$
\begin{array}{lll}
\vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, & \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2} & t^{s}=-\vec{Q}^{2} \\
\vec{p}_{f}^{a}=\vec{P}, & \vec{p}_{i}^{a}=\vec{P}-\vec{Q} & t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}
\end{array}
$$

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

Pion mass: $\quad 260 \mathrm{MeV}$

Lattice spacing: 0.093 fm
Volume: $32^{3} \times 64$
Spatial extent:
3 fm

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

Small difference: $\quad t^{s}=-\vec{Q}^{2} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}$

$$
A\left(-0.64 \mathrm{GeV}^{2}\right) \sim A\left(-0.69 \mathrm{GeV}^{2}\right)
$$

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Results: matrix elements

Eight independent matrix elements needed to disentangle the A_{i} asymmetric frame

Results: matrix elements

Eight independent matrix elements needed to disentangle the A_{i}
 asymmetric frame

Results: matrix elements

* Eight independent matrix elements needed to disentangle the A_{i}

Results: matrix elements

\star Eight independent matrix elements needed to disentangle the A_{i}

Results: matrix elements

\star Eight independent matrix elements needed to disentangle the A_{i}

* Asymmetric frame: ME do not have definite symmetries in $\pm P_{3}, \pm Q, \pm z$
* Noisy ME lead to challenges in extracting A_{i} of sub-leading magnitude

How do the A_{i} compare between frames?

How do the A_{i} compare between frames?

A_{1}, A_{5} dominant contributions
Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}
\star Remaining A_{i} suppressed (at least for this kinematic setup and $\xi=0$)

quasi-GPDs in terms of A_{i}

The mapping of A_{i} to the quasi-GPDs is not unique
Construction of a Lorentz invariant definition may be beneficial

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

quasi-GPDs in terms of A_{i}

\star The mapping of A_{i} to the quasi-GPDs is not unique
\star Construction of a Lorentz invariant definition may be beneficial

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

\star All quasi-GPDs definitions converge to the same light-cone GPDs (up to systematic effects)

Agreement between frames for both quasi-GPDs (by definition)

Beyond exploration

11 values of $-t$ (3 in symm. frame and 8 in asymm. frame)
Separate calculation for each $-t$ value in symmetric frame
Two groups of $-t$ value in asymmetric frame: $\vec{Q}=\left(Q_{x}, 0,0\right),\left(Q_{x}, Q_{y}, 0\right)$

frame	$P_{3}[\mathrm{GeV}]$	$\boldsymbol{\Delta}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Momentum transfer range is very optimistic (some values have enhanced systematic uncertainties)

Unpolarized quasi-GPDs

asymmetric frame

Impressive quality of signal quality
Behavior with increasing $-t$ as "expected" qualitatively

Unpolarized light-cone GPDs

quasi-GPDs transformed to momentum space

Matching formalism to 1 loop accuracy level
+/-x correspond to quark and anti-quark region
Anti-quark region susceptible to systematic uncertainties.

$-t=0.17 \mathrm{GeV}^{2}$
$-t=0.33 \mathrm{GeV}^{2}$
$-t=0.64 \mathrm{GeV}^{2}$
$-t=0.80 \mathrm{GeV}^{2}$
$-t=1.16 \mathrm{GeV}^{2}$
$-t=1.37 \mathrm{GeV}^{2}$
$-t=1.50 \mathrm{GeV}^{2}$

- $-t=2.26 \mathrm{GeV}^{2}$

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case

* At $\xi=0$ only \widetilde{H} is accessible directly
(\widetilde{E} accessible from parametrization of the t dependence)

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case

* At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)
asymmetric frame

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case

* At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)
asymmetric frame

\star All values of t obtained at the cost of one
* Preliminary analysis very encouraging!

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography
Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
2. Lattice QCD calculations of GPDs and related structures
3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

Mellin moments can be extracted utilizing quasi-GPDs data

Xiang Gao, Tue 11:50am

Synergy with phenomenology is an exciting prospect!
M. Constantinou, DIS 2023

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

Mellin moments can be extracted utilizing quasi-GPDs data
\star Synergy with phenomenology is an exciting prospect!

> Thank you

Office of
Science

