

Tomography of pions and protons via transverse momentum dependent distributions

Patrick Barry, Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Based on: <u>arXiv:2302.01192</u>

What do we know about structures?

 Most well-known structure is through longitudinal structure of hadrons, particularly protons

C. Cocuzza, et al., Phys. Rev. D **104**, 074031 (2021)

Pion PDFs in JAM

3D structures of hadrons

Even more challenging is the 3d structure through GPDs and TMDs

Unpolarized TMD PDF

$$\tilde{f}_{q/\mathcal{N}}(x, b_T) = \int \frac{\mathrm{d}b^-}{4\pi} e^{-ixP^+b^-} \mathrm{Tr} \left[\langle \mathcal{N} | \bar{\psi}_q(b) \gamma^+ \mathcal{W}(b, 0) \psi_q(0) | \mathcal{N} \rangle \right]$$
$$b \equiv (b^-, 0^+, \boldsymbol{b}_T)$$

- $m{b_T}$ is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, $m{k_T}$
- We can learn about the coordinate space correlations of quark fields in hadrons
- Modification needed for UV and rapidity divergences; acquire regulators: $\tilde{f}_{q/\mathcal{N}}(x,b_T) \to \tilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta)$

Factorization for low- q_T Drell-Yan

- Like collinear observable, a hard part with two functions that describe structure of beam and target
- So called "W"-term, valid only at low- q_T

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d}\tau \mathrm{d}Y \mathrm{d}q_T^2} = \frac{4\pi^2 \alpha^2}{9\tau S^2} \sum_{q} H_{q\bar{q}}(Q^2, \mu) \int \mathrm{d}^2 b_T \, e^{ib_T \cdot q_T} \times \tilde{f}_{q/\pi}(x_\pi, b_T, \mu, Q^2) \, \tilde{f}_{\bar{q}/A}(x_A, b_T, \mu, Q^2),$$

TMD PDF within the b_{st} prescription

$$\mathbf{b}_*(\mathbf{b}_T) \equiv rac{\mathbf{b}_T}{\sqrt{1+b_T^2/b_{ ext{max}}^2}}.$$

Low- b_T : perturbative

high- b_T : non-perturbative

$$\tilde{f}_{q/\mathcal{N}(A)}(x, b_T, \mu_Q, Q^2) = \underbrace{(C \otimes f)_{q/\mathcal{N}(A)}(x; b_*)}_{\text{exp}} \times \exp \left\{ -g_{q/\mathcal{N}(A)}(x, b_T) - g_K(b_T) \ln \frac{Q}{Q_0} - \underbrace{S(b_*, Q_0, Q, \mu_Q)}_{\text{exp}} \right\}$$

Relates the TMD at small- b_T to the **collinear** PDF

⇒ TMD is sensitive to collinear PDFs

 $g_{q/\mathcal{N}(A)}$: intrinsic non-perturbative structure of the TMD

 g_K : universal non-perturbative Collins-Soper kernel

Controls the perturbative evolution of the TMD

A few details

- Nuclear TMD model linear combination of bound protons and neutrons
 - Include an additional A-dependent nuclear parameter
- We use the MAP collaboration's parametrization for non-perturbative

 TMDs

 See M. Cerutti's talk @ 4:30pm in WG5
 - ullet Only tested parametrization flexible enough to capture features of Q bins
- Perform a simultaneous global analysis of pion TMD and collinear PDFs, with proton (nuclear) TMDs
 - ullet Include both q_T -dependent and collinear pion data and fixed-target pA data

Data and theory agreement

• Fit both pA and πA DY data and achieve good agreement to both

Process	Experiment	$\sqrt{s} \mathrm{GeV}$	χ^2/np	Z-score
q_T -integr. DY	E615 [37]	21.8	0.86	0.76
$\pi W \to \mu^+ \mu^- X$	NA10 [38]	19.1	0.54	2.27
	NA10 [38]	23.2	0.91	0.18
Leading neutron	H1 [73]	318.7	0.36	4.61
ep o e'nX	ZEUS [74]	300.3	1.48	2.16
q_T -dep. pA DY	E288 [67]	19.4	0.93	0.25
$pA \rightarrow \mu^{+}\mu^{-}X$	E288 [67]	23.8	1.33	1.54
	E288 [67]	24.7	0.95	0.23
	E605 [68]	38.8	1.07	0.39
	E772 [69]	38.8	2.41	5.74
	E866 (Fe/Be) [70]	38.8	1.07	0.29
	E866 (W/Be) [70]	38.8	0.89	0.11
q_T -dep. πA DY	E615 [37]	21.8	1.61	2.58
$\pi W \to \mu^+ \mu^- X$	E537 [71]	15.3	1.11	0.57
Total			1.15	2.55

Extracted pion PDFs

• The small- q_T data do not constrain much the PDFs

Resulting TMD PDFs of proton and pion

$$\tilde{f}_{q/\mathcal{N}}(b_T|x;Q,Q^2) \equiv \frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)}{\int \mathrm{d}^2 \boldsymbol{b}_T \tilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)} \underbrace{\frac{\Xi}{\Xi}}$$

- Broadening appearing as x increases
- Up quark in pion is narrower than up quark in proton

Resulting average b_T

 $\langle b_T | x \rangle_{q/\mathcal{N}} = \int \mathrm{d}^2 \boldsymbol{b}_T \, b_T \, \tilde{f}_{q/\mathcal{N}}(b_T | x; Q, Q^2)$

- Up quark in proton is ~ 1.2 times bigger than that of pion
- Pion's $\langle b_T | x \rangle$ is $5.3 7.5\sigma$ smaller than proton in this range
- Decreases as x decreases

Possible explanation

• At large x, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron

barryp@jlab.org

13

Possible explanation

• At small x, sea quarks and potential $q\bar{q}$ bound states allowing only for a smaller bound system

Transverse EMC effect

- Compare the average b_T given x for the up quark in the bound proton to that of the free proton
- Less than 1 by $\sim 5 10\%$ over the x range

Outlook

- Future studies needed for theoretical explanations of these phenomena
- Lattice QCD can in principle calculate any hadronic state look to kaons, rho mesons, etc.
- Future tagged experiments such as at EIC and JLab 22 GeV can provide measurements for neutrons, pions, and kaons
- We should study other ways to formulate the TMD such as: Qiu-Zhang method, the ζ -prescription, or the bottom-up approach

Backup

Available datasets for pion structures

Small b_T operator product expansion

• At small b_T , the TMDPDF can be described in terms of its OPE:

$$\tilde{f}_{f/h}(x, b_T; \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{\mathcal{C}}_{f/j}(x/\xi, b_T; \zeta_F, \mu) f_{j/h}(\xi; \mu) + \mathcal{O}((\Lambda_{\text{QCD}} b_T)^a)$$

- where $ilde{C}$ are the Wilson coefficients, and $f_{j/h}$ is the collinear PDF
- ullet Breaks down when b_T gets large

b_{st} prescription

ullet A common approach to regulating large b_T behavior

$$\mathbf{b}_*(\mathbf{b}_T) \equiv \frac{\mathbf{b}_T}{\sqrt{1 + b_T^2/b_{\max}^2}}.$$

Must choose an appropriate value; a transition from perturbative to non-perturbative physics

- At small b_T , $b_*(b_T) = b_T$
- At large b_T , $b_*(b_T) = b_{\max}$

Introduction of non-perturbative functions

• Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

Completely general – independent of quark, hadron, PDF or FF

$$g_K(b_T; b_{\text{max}}) = -\tilde{K}(b_T, \mu) + \tilde{K}(b_*, \mu)$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$e^{-g_{j/H}(x, oldsymbol{b}_{\mathrm{T}}; b_{\mathrm{max}})}$$

$$= \frac{\tilde{f}_{j/H}(x, oldsymbol{b}_{\mathrm{T}}; \zeta, \mu)}{\tilde{f}_{j/H}(x, oldsymbol{b}_{\mathrm{T}}; \zeta, \mu)} e^{g_K(b_{\mathrm{T}}; b_{\mathrm{max}}) \ln(\sqrt{\zeta}/Q_0)}.$$

TMD factorization in Drell-Yan

• In small- q_{T} region, use the Collins-Soper-Sterman (CSS) formalism and b_* prescription

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2} = \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j,j_A,j_B} H_{j\bar{\jmath}}^{\mathrm{DY}}(Q,\mu_Q,a_s(\mu_Q)) \int \frac{\mathrm{d}^2\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}}$$

Can these data constrain the pion collinear PDF?

$$\times e^{-g_{j/A}(x_A,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_A}^1 \frac{\mathrm{d}\xi_A}{\xi_A} \underbrace{f_{j_A/A}(\xi_A;\mu_{b_*})} \tilde{C}_{j/j_A}^{\mathrm{PDF}} \left(\frac{x_A}{\xi_A},b_*;\mu_{b_*}^2,\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*}^2,\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces} \\ \times e^{-g_{\bar{\jmath}/B}(x_B,b_{\mathrm{T}};b_{\mathrm{max}})} \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} \underbrace{f_{j_B/B}(\xi_B;\mu_{b_*})} \tilde{C}_{\bar{\jmath}/j_B}^{\mathrm{PDF}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*},a_s(\mu_{b_*})\right) \quad \text{Perturbative pieces}$$

$$\times \exp \left\{ -\frac{g_{K}(b_{T}; b_{\max}) \ln \frac{Q^{2}}{Q_{0}^{2}} + \tilde{K}(b_{*}; \mu_{b_{*}}) \ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} + \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{\mathrm{d}\mu'}{\mu'} \left[2\gamma_{j}(a_{s}(\mu')) - \ln \frac{Q^{2}}{(\mu')^{2}} \gamma_{K}(a_{s}(\mu')) \right] \right\}$$

Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., Phys. Rev. Lett **129**, 242001 (2022).

$$g_{q/\mathcal{N}/A} = g_{q/\mathcal{N}} \left(1 - a_{\mathcal{N}} \left(A^{1/3} - 1 \right) \right)$$

• Where $a_{\mathcal{N}}$ is an additional parameter to be fit

Resulting χ^2 for each parametrization

MAP gives best overall

Datasets in the q_T -dependent analysis

Expt.	\sqrt{s} (GeV)	Reaction	Observable	Q(GeV)	x_F or y	$N_{ m pts.}$
E288 [39]	19.4	$p + Pt \rightarrow \ell^+\ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 – 9	y = 0.4	38
E288 [39]	23.8	$p + Pt \rightarrow \ell^+\ell^- X$	$E\mathrm{d}^3\sigma/\mathrm{d}^3\mathbf{q}$	4 - 12	y = 0.21	48
E288 [39]	24.7	$p + Pt \rightarrow \ell^+\ell^- X$	$E d^3 \sigma / d^3 \mathbf{q}$	4 - 14	y = 0.03	74
E605 [40]	38.8	$p + Cu \rightarrow \ell^+ \ell^- X$	$E\mathrm{d}^3\sigma/\mathrm{d}^3\mathbf{q}$	7 - 18	$x_F = 0.1$	49
E772 [41]	38.8	$p + D \rightarrow \ell^+ \ell^- X$	$E\mathrm{d}^3\sigma/\mathrm{d}^3\mathbf{q}$	5 – 15	$0.1 \le x_F \le 0.3$	61
E866 [50]	38.8	$p + Fe \rightarrow \ell^+\ell^- X$	R_{FeBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E866 [50]	38.8	$p + W \rightarrow \ell^+ \ell^- X$	R_{WBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E537 [38]	15.3	$\pi^- + W \rightarrow \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T$	4 – 9	$0 < x_F < 0.8$	48
E615 [4]	21.8	$\pi^- + W \rightarrow \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T^2$	4.05 - 8.55	$0 < x_F < 0.8$	45

- Total of 383 number of points
- All fixed target, low-energy data
- We perform a cut of $q_T^{\rm max} < 0.25 \ Q$

barryp@jlab.org

25