Higgs couplings to fermions at CMS

Elisabetta Gallo

(DESY and University of Hamburg, on behalf of the CMS Collaboration)

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

A candidate $H \rightarrow b\overline{b}$ event in CMS produced in association with a Z

East Lansing, 28th March 2023

Higgs couplings

Theoretical cross sections at a mass of 125.38 GeV

The Higgs Yukawa coupling is best measured:

- For top in direct ttH production and/or in combination with ggH production
- For tau leptons and b-, c-quarks in decays
 - b-quark largest branching ratio, but large V+jets or QCD background
 - tau leptons, smaller branching ratio but less background
 - c-jets low BR and challenging background

Production mode	Cross section (pb)	Decay channel Branching fraction (%)	
ggH	48.31 ± 2.44	bb	57.63 ± 0.70
VBF	3.771 ± 0.807	WW	22.00 ± 0.33
WH	1.359 ± 0.028	gg	8.15 ± 0.42
ZH	0.877 ± 0.036	ττ	6.21 ± 0.09
ttH	0.503 ± 0.035	CC	2.86 ± 0.09
bbH	0.482 ± 0.097	ZZ	2.71 ± 0.04
tH	0.092 ± 0.008	$\gamma\gamma$	0.227 ± 0.005
		$\mathrm{Z}\gamma$	0.157 ± 0.009
		SS	0.025 ± 0.001
		μμ	0.0216 ± 0.0004
ggH	tH bbH ZH WH VBF	bb	μμ zz γγ zγ ^{ss} cc gg

Higgs to fermion Yukawa coupling

- Third generation coupling established at 5 σ in CMS alone in $b\overline{b}$ (2018) and $\tau^+\tau^-$ (2017) in decay and in top (2018) in production
- Recent combined extraction of couplings: precision of 10% for the tau coupling, >~15% for the top and b-couplings in the k-framework
- Now moving also to Simplified Template Cross Section (STXS) and more differential distributions
- Also CP constraints in τ decays (paper)
- A selection of latest results shown here in au, b and c decays

A portrait of the Higgs boson by the CMS experiment ten years after the discovery <u>Nature 607 (2022) 60-68</u>

τ lepton reconstruction in CMS

- For $H \rightarrow \tau \tau$, decay channels included: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h \tau_h$,
- CMS has an algorithm for hadronic tau decays, HadronPlusStrip (HPS) and a Deep neural network for further discrimination from electrons, muons, and QCD jets (DeepTau)

Decay mode	Resonance	B (%)	
Leptonic decays		35.2	
$ au^- ightarrow { m e}^- \overline{ u}_{ m e} u_ au$			17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$			17.4
Hadronic decays		64.8	
$ au^- ightarrow { m h}^- u_ au$			11.5
$ au^- ightarrow { m h}^- \pi^0 u_ au$	ho(770)		25.9
$ au^- ightarrow { m h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$		9.5
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- u_ au$	$a_1(1260)$		9.8
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- \pi^0 u_ au$			4.8
Other			3.3

2022) P07023

JINST

4

$H \rightarrow \tau \tau$

- Based on all Run 2 CMS data (138 fb⁻¹)
- Goal and analysis strategy: measure the STXS stage 0 and 1.2 in the ggH, qqH and VH channels
- Two analyses strategies for ggH+qqH: one Cut Based (CB), one based on a Neural Network (NN)
- One analysis targeting VH production

Neural Network classes

- Multiclass neural networks trained on signal and backgrounds:
 - For Stage 0 two signal classes (ggH and qqH) and 5 background classes
 - For Stage 1.2 20 classes (15 signal STXS bins)

Output distributions

- ~ 90% of background is estimated from data:
 - $Z \rightarrow \tau \tau$ with an embedding technique starting from $Z \rightarrow \mu \mu$ data, assuming LFU and substituting the muons with simulated $\tau's$
 - Jets in fake tau candidates with a fake factor method, where the factors are evaluated in an orthogonal application region
- The CB analysis (ggH+qqH) is based on event categorization optimized to signal versus background in 1-D or 2-D distributions
- The NN analysis (ggH+qqH) uses the 2D(ggH-qqH) or 1D (STXS bins) distributions of the discriminants as fitting variable
- The VH analysis fits the 2D distribution in reconstructed Higgs mass and $\ensuremath{p_{\text{T}}}$

Results in STXS stage 0

- Stage 0 cross sections/signal strengths are in agreement with the SM
- Experimental systematics uncertainties ("syst") are of the same order of statistical uncertainties
- Theoretical uncertainties are of similar order
- The bin-by-bin uncertainties are due to the limited MC statistics
- The NN analysis is more performant compared to the CB in the VBF channel
- Inclusive signal strength:

Results in STXS stage 1.2

CMS

p_H [200-300] CE

N

NN

NIN

NN

NIN

CB

CF

NN

CB

NN

H

CMS

"gg

p^H_T [300,∞] CB

μ ggH 0 Jet CF

μ^{p_T [0,10]} ggH 0 Jet

μ^p_T^H [10,200] ggH 0 Jet

qqH

p^H [0,200]

p_H[0,200]

p^H [200.∞]

μ qqH < 2 Jet or m [0,350]

μ⁻ qqH ≥ 2 Jet m [350,700]

μ qqH ≥ 2 Jet m, [700,∞]

 $\mu_{qqH \ge 2 \text{ Jet } m_j}^{\Gamma_T} [350,\infty]$

μ. ggH

VH, $H \rightarrow bb$ channel

- b-Yukawa coupling best measured in associated WH (1lepton) or ZH production (0-leptons, 2 leptons)
- Analysis strategies:
 - $\circ~$ Resolved and merged jet (for high Higgs p_{T}) categories
 - FSR recovery, b-jet energy regression and kinematic fit for the 2 lepton channel
 - Main backgrounds (V+light jets, V+ HF jets, top pair) constrained in control regions
 - BDTs or DNN output as discriminating variable to extract the signal
- Cross checks: VZ, $Z \rightarrow bb$; m_{jj} independent analysis

CMS-PAS-HIG-20-001

DIS2023 - Elisabetta Gallo - Higgs to fermions at CMS

STXS in the $H \rightarrow bb$ channel

- Analysis categories are designed to match the STXS bins
- The splitting in the highest p_T bins will give sensitivity to anomalous couplings and EFT effects.

In general good agreement with the SM STXS predictions

$H \rightarrow bb$ in the VBF channel

- Dedicated analysis based on 91 fb⁻¹ at 13 TeV, adding sensitivity on the b-Yukawa on top of the traditional VH channel
- Signature: two b-jets from the Higgs decay, two additional jets with large $m_{jj},\,\Delta\eta_{jj}$
- Two VBF triggers in 2016, 2018 data with Loose and Tight VBF criteria on the VBF topology. Analysis strategy:

For the Tight: a BDT binary classifier VBF vs QCD
For the Loose: a BDT multiclass, VBF, ggH, Z->bb

 b jets identified by the DeepJet algorithm based on a DNN and energy regression algorithm applied, based on a DNN trained in top-pairs events

CMS-PAS-HIG-22-009

$H \rightarrow bb$ in the VBF channel

The signal is extracted from the fit of a parametric function to the m_{bb} distribution as sum of:

- a smooth function (polynomial*exp) for the continuum (dominated by QCD jets)
- o the resonant Z+jets background
- o the Higgs signal
- The normalizations of **signal** and of the **Z+jets** standard candle are free parameters
- Largest uncertainty: choice of Parton Shower model for the VBF signal (Pythia8 versus Herwig7)
- Exclusive VBF signal strength (ggH considered as background and constraint to SM value):

$$\mu = 0.97 \pm 0.35^{+0.39}_{-0.28}$$

$\mathsf{VH}, \mathsf{H} \rightarrow \mathit{CC}$

- Enormous progress also in 2nd generation couplings, i.e. in c-Yukawa:
 - Two topologies, "merged" and "resolved"
 - new c-tagger based on
 ParticleNet graph NN in the
 merged regime (p_T (Higgs) >
 300 GeV)
 - c-jet energy regression, refined analysis based on NN
- Cross-check measurement of VZ, Z-> cc, first observation at hadron colliders:

 $\mu = 1.01 \pm 0.22$

DIS2023 - Elisabetta Gallo - Higgs to fermions at CMS

arXiv:2205.05550, accepted in PRL

Observed (expected) limit on the signal strength: $\mu = 14$ (7.6) $1.1 < |k_c| < 5.5(|k_c| < 3.4)$

Summary

- After the discovery of the Higgs Yukawa coupling, CMS has measured cross sections in the STXS framework and more differentially in the τ and/or b channels
- STXS 0 and 1.2 measured in the au channel, overall signal strength $~\mu=0.82\pm0.11$
- STXS measured in the VH, $H \rightarrow bb$ channel for the first time in CMS
- CMS has a new dedicated analysis in VBF $H \rightarrow bb$, reaching a very good sensitivity
- Sensitivity in $H \rightarrow cc$ significantly improved thanks to sophisticated c-taggers and c-jet energy regression. $Z \rightarrow cc$ observed for the first time at a hadron collider
- We are continuing on all fronts in refining analysis techniques for all these decays in Run 3

Backup

